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ABSTRACT In this work, we investigate the few-cycle optical pulses with Gauss and Bessel profile in strained
carbon nanotubes with impurities. We consider a multi-level impurity in which the energy levels are well sep-
arated from the conduction and valence bands of carbon nanotubes. The effect of the impurity parameters
on the electromagnetic pulse is analyzed. Also, we investigate the influence of the value of the mechanical
stretching on the few-cycle pulse shape.
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1. Introduction

Few-cycle optical pulses have a great practical potential in the development of nonlinear optics devices [1, 2]. Such
pulses include those that contain only a few oscillations of the electromagnetic field. Pulses with Gaussian [3] and
Bessel [4] cross sections are of great interest. The first (Gaussian beam) is most commonly used in lasers. The second has
a number of unusual properties, one of which is diffractionlessness [5].

Note that the medium in which pulse propagates has a great influence on its behavior. From this point of view, media
containing carbon nanotubes [6] are very attractive due to their stabilizing effect, including on pulses with the Bessel
cross section [7]. It should be said, that the presence of impurities in CNTs has a significant effect on the pulse evolution,
which is shown in many works [8, 9]. There are several models for accounting for the impurities. The simplest of them is
the Anderson model [10], which takes into account only the hybridization of electronic subsystems. Another is the strong
electron-electron model [11], in which the Fermi velocity depends on the electron energy in a logarithmic manner. And,
the third model considered in this work is the multi-level impurity model [12], in which transitions between the CNT
conduction band and impurity levels are possible.

At the same time, the question related to the influence of a strong acoustic field remains unexplored. In Ref. [13] the
authors study the effect of external deformations in the one-dimensional case. In this work, we study the dynamics of 2D
few-cycle optical pulse in a dielectric medium with impurity CNTs under the action of an acoustic field.

2. Model and basic equations

The electron spectrum for zigzag carbon nanotubes (n, 0), taking into account the impurity εimp (p, s), has the fol-
lowing form [12]:

εimp (p, s) = 0.5

(
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(1)

Here R, Q determine the transitions of an electron between impurity levels and sublattices of nanotubes, D describes
interlattice transitions in CNTs, Wj is the energy of an electron localized at the j-th impurity level, αi,j is the quantity
equals to the hopping integral related to the concentration of impurities between the site of the sublattice of the nanotube
i and the impurity level j. We restrict ourselves to the consideration of four levels, since, as the level number increases,
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its contribution to the impurity parameters decreases. ∆(p, s) is the dispersion law for electrons of carbon nanotubes in
the absence of impurity [14]:

∆ (p, s) = γ

√
1 + 4 cos (ap) cos

(π
n
s
)

+ 4 cos2
(π
n
s
)
, (2)

where γ ≈ 2 eV, a = 3b/2~, b = 0.142 nm is the distance between neighboring atoms in carbon nanotube with quasi-
momentum (p, s), and p is the momentum component along the CNT axis, s = 0, .., n.

Due to the distance between CNTs exceeds their diameter is about in 10 times, we can neglect the interaction between
the tubes. We consider the geometry of our problem, in which the wave vector is perpendicular to the CNT array and the
electric field strength vector E is co-directional the nanotube axis.

The acoustic field is due to the stress field, which appears due to the deformation field. It can be taken into account
in the framework of the gauge theory. This field is determined by the vector potential A′, which changes the momentum
of electrons in a medium containing an array of carbon nanotubes. All interatomic bonds in CNTs under stress are
nonequivalent; therefore, the neighboring hopping integrals may not coincide. We can consider CNTs as a rolled sheet of
graphene and write down all the equations for it. Further, we should write the periodic boundary conditions. Then, the
gauge vector potential has the form: A′ = (A′z, A

′
x) [15]:

A′x =
(γ2 + γ3 − 2γ1)

2
,

A′z =
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2
,

(3)

where γ1,2,3 is the modulation of hopping integrals due to displacements of carbon atoms.
The contributions of the electromagnetic field and lattice deformations are reduced to the sum of the corresponding

vector potentials (the electromagnetic field of the pulse and the gauge) [16]:
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(4)

where ε is the dielectric constant of the medium, β is the electronic Gruneisen parameter, which determines the change in
the frequency of lattice vibrations with a change in the volume of the system [17] (for CNT we can take β ≈ 2), µ = 0.19
is the Poisson’s coefficient for carbon nanotubes [18], χ is the parameter depending on the characteristics of the chemical
bond in the substance, which can be set for CNTs equal to 1, uzz is the longitudinal component of the strain tensor, j is
the current density, which is determined as:

j = 2e

n∑
s=1

∫
BZ

v (p, s) · f (p, s) dp, (5)

where e is the electron charge, v (p, s) = ∂εimp (p, s) /∂p, f(p, s) is the Fermi distribution function, BZ means inte-
gration over the first Brillouin zone. Carrying out standard calculations of the current density for CNTs, we obtain the
effective equation for the vector potential of the electric field:
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(6)

where n0 is the electron concentration, kB is the Boltzmann constant, T is the temperature, asq are the coefficients in the
expansion of the electron dispersion law (1) in a Fourier series,NF is the normalization constant for the Fermi distribution.

The initial condition with a Gaussian (7a) and a Bessel (7b) transverse profile is chosen in the following form:
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where Q0 is the initial amplitude of the electromagnetic pulse, lx, lz is the width of the pulse along the x and z-axis,
υ is the pulse velocity along OZ, l is the cutoff parameter for Bessel function. All values are given here already in
dimensionless form.

3. Main results and discussion

Equation (6) is solved numerically [19] with the following system parameters: CNT of the “zigzag” type (7, 0),
ε = 4, T = 293 K, υ = 0.9 (in units of the light speed).

The evolution of the electromagnetic field during its propagation in a medium with impurity carbon nanotubes under
the action of an acoustic field is shown in Figs. 1 and 2 for the Gaussian and Bessel profiles, respectively.

FIG. 1. Pulse evolution with a Gaussian profile (uzz = 0.1): a) t = 0; b) t = 7; c) t = 12. The time
unit corresponds to 2 · 10−14 s

FIG. 2. Pulse evolution with a Bessel profile (uzz = 0.1): a) t = 0; b) t = 7; c) t = 12. The time unit
corresponds to 2 · 10−14 s

From the above dependencies, we can say that the pulse propagates about 10 of its wavelengths regardless of the
cross-sectional shape. Therefore, it moves stably even under the action of deformation. Although the fields are assumed
to be strong, there is no significant change in the character of the pulse propagation with a Bessel profile. It should
be noted, that for the same values of the initial pulse amplitude with a Gaussian profile, a noticeable decrease in the
diffraction effect is observed, which is associated with the nonlinear properties of the medium. Note that in both cases
(Figs. 1, 2) a “tail” appears behind the main pulse, which is clearly visible on the following Figs. 3 and 4. Figs. 1 and 2
show only a part of the computational domain for clarity of the behavior of the main pulse.

The dependence of the shape of the electromagnetic pulse on the magnitude of the acoustic field is shown in Fig. 3.
It can be seen, that the mechanical load on the CNT has a greater effect on the pulse with a transverse Gaussian profile

as compared to the Bessel pulse, even in the case of small values of the uzz . This can be associated with the pulse with
a transverse Bessel cross section and has the property of immunity from diffraction. Note that the mechanical tension on
the CNT changes the dispersion law of electrons in the CNT, and, therefore, changes the form of the nonlinearity of the
medium. As before, nonlinearity has a stronger effect on the Gaussian pulse dynamics.

Next, we investigate the effect of impurities in strained CNTs on the pulse propagation process (Fig. 4).
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FIG. 3. The dependence of the electric field strengthE (longitudinal section at the pulse center: t = 12,
D = 0.1γ) on the coordinate z for different longitudinal components of the strain tensor: a) Gaussian
profile: the solid curve corresponds to uzz = 0, the dotted curve – uzz = 0.01, the dashed curve –
uzz = 0.05; b) Bessel profile: the solid curve corresponds to uzz = 0, the dotted curve – uzz = 0.05,
the dashed curve – uzz = 0.1. The z-unit corresponds to 2 · 10−5 m, along the E-axis – 107 V/m, in
time – 2 · 10−14 s

FIG. 4. The dependence of the electric field strengthE (longitudinal section at the pulse center: t = 12,
uzz = 0.01) on the coordinate z for the different impurity parameters (D = −R = −Q): (a) Gaussian
profile – for clarity, each i-th curve is shifted up by (i−1) units; (b) Bessel profile – for clarity, each i-th
curve is shifted up by 4(i− 1) units: curve 1 corresponds to D = 0 (no impurity), curve 2 – D = 0.3γ,
curve 3 – D = 0.5γ, curve 4 – D = 1.0γ. The unit along the z-axis corresponds to 2 · 10−5 m, along
the E-axis E – 107 V/m, in time – 2 · 10−14 s

It can be seen from the given dependencies that the impurity parameters allows us to not only change the shape, but
also the pulse amplitude. We also note that for pulses of both cross sections (Gaussian and Bessel), pulse inversion is
observed when impurity carbon nanotubes are introduced into the medium (curves 2–4).

4. Conclusion

Let us formulate the main results from the work:
1. There is a localized pulse propagation in dielectric medium with impurity carbon nanotubes under mechanical

strain. Dispersive broadening of pulses during propagation can be compensated for by selecting the appropriate
parameters of the acoustic field and impurity.

2. For a pulse with a transverse Gaussian profile, the effect of the acoustic field is more pronounced than for a pulse
with a Bessel profile.

3. It is observed, that due to the impurity introduction, it is possible to control the amplitude and shape of few-cycle
optical pulse with different profiles.
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