
NANOSYSTEMS:
PHYSICS, CHEMISTRY, MATHEMATICS

Original article

Guselnikov M.S., et al. Nanosystems:
Phys. Chem. Math., 2025, 16 (3), 311–316.

http://nanojournal.ifmo.ru
DOI 10.17586/2220-8054-2025-16-3-311-316

Properties of multi-moded phase-randomized coherent states

Mikhail S. Guselnikov1,a, Andrei A. Gaidash1,2,b, George P. Miroshnichenko1,c, Anton V. Kozubov1,2,d

1ITMO University, Saint Petersburg, Russia
2Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

amsguselnikov@itmo.ru, bandrewdgk@gmail.com, cgpmirosh@gmail.com, davkozubov@itmo.ru

Corresponding author: Gaidash A.A., andrewdgk@gmail.com

ABSTRACT Phase-randomized coherent states are widely used in various applications of quantum optics. They
are best known to be the core part of decoy-state quantum key distribution protocols with phase-coding. From
the perspective of future development of quantum protocol architecture, it is important to determine whether
phase randomization can be applied at an arbitrary stage of an optical scheme without affecting the informa-
tional properties of the quantum system. In this paper, using the superoperator formalism, we have shown that
phase randomization of a two-mode coherent state commutes with linear optical transformations. This implies
that phase randomization can be applied virtually at any point within the optical setup. We further demonstrate
that the Holevo bound for such a state coincides with that of regular coherent states, bearing in mind that the
Holevo bound quantifies only the maximum amount of information accessible to an eavesdropper. Advantages
of phase-randomized coherent states compare to regular ones in particular cases of eavesdropper’s strategies
should be considered separately. Also, these findings indicate that phase randomization can be directly applied
to a subcarrier wave quantum key distribution type of systems, opening prospects for its future development.
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1. Introduction

Phase-randomized or phase-averaged coherent states (PHAVs) are peculiar quantum optical states: a mixture of Fock
states with Poissonian distribution. In particular, they are known to be utilized in the study of generalized Hong-Ou-
Mandel effect [1]. However, they are best known in the context of quantum key distribution (QKD) protocols based on
weak coherent states. Especially, two-moded ones are widely used in protocols with phase-coding, implying utilization
of Mach-Zehnder interferometer [2, 3], or other interferometric schemes [4–8]. Compare to single photons, attenuated
laser radiation - treated as weak coherent states - can contain more than one photon, which may compromise the security
of such protocols for quantum communication, and PHAVs have proven to be an effective tool for enhancing the security
of weak coherent state QKD protocols [9], leading to the development of decoy-state QKD protocols [10]. Since then,
PHAVs have become critically important in quantum communication. Their properties have been extensively studied,
revealing the non-Gaussian nature of their Wigner functions, simple methods of generation, and a growing range of
applications [11–17].

Practical decoy-state QKD protocols with phase-coding utilize multi-mode (precisely, two-mode) PHAVs. The main
difference compare to single-mode PHAVs is that multi-mode ones may contain relative phase. And, unlike single-mode
PHAVs, the informational properties of multimode PHAVs remain incompletely characterized. In this paper, we focus on
exploration in regards to the order of optical transformations including phase-randomization taken place in QKD optical
schemes, and how this order might affect the informational aspects. In other words, our goal is to elaborate on whether
phase randomization in two-mode systems commutes with linear optical transformations and what consequences of the
ordering choice are.
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2. Commutation of phase-randomization with transformations of linear optics

First, consider a density matrix ρ of a two-mode phase-randomized state constructed from coherent states |α〉 and
|β〉, where α = |α|eiθ and β = |β|ei(θ+φ) are complex amplitudes of coherent states, respectively,

ρ(φ) =

∫
|α〉〈α| ⊗ |β〉〈β| dθ

2π
. (1)

Density matrix above can be expressed in terms of superoperator notation:

ρ(φ) = N

∫
e
←−−−−−−−−
(αa†1+βa

†
2)+
−−−−−−−−−→
(α∗a1+β

∗a2)|0〉〈0| dθ
2π

=

N

∞∑
n=0

n∑
k=0

←−−−−−−−−−−−−
(|α|a†1 + |β|eiφa

†
2)
n−k
−−−−−−−−−−−−−−→
(|α|a1 + |β|e−iφa2))kδn−2k,0

(n− k)!k!
|0〉〈0| =

= N

∞∑
n=0

(←−−−−−−−−−−−−
(|α|a†1 + |β|eiφa

†
2)
−−−−−−−−−−−−−−→
(|α|a1 + |β|e−iφa2))

)n
n!n!

|0〉〈0| =

= N
∑
n

(K(+)
R(φ))

n

n!n!
|0〉〈0|, R(φ) =

 |α|2 |αβ|e−iφ

|αβ|eiφ |β|2

 , (2)

where we have integrated over the common phase θ of the two coherent states; a†i (ai) is the creation (annihilation)

operator of the ith mode, N = e−|α|
2−|β|2 is normalization constant, also K(+)

R(φ) =
∑
ij

R(φ)ij
←−
â†i
−→
âj introduced in [18],

←−
AB = AB and

−→
AB = BA is left- and right-action notation for superoprators, ( · )∗ denotes complex conjugation and

( · )† denotes the Hermitian conjugation, δij is the Kronecker delta-symbol. Obtained superoperator form provides some
explicit insights on the properties of the state, that will be discussed further.

We discuss additional transformations applied to the state, that may take place before or after the phase randomization.
Expression of the state in the superoperator notation (2) explicitly shows that any transformation that maps a set of creation
(annihilation) operators to a different set of creation (annihilation) operators, in particular, of the form a†i →

∑
j

Mija
†
j

for a given matrix Mij , preserves the state to be phase-randomized. Basically, these are transformations that describe
actions of linear optics devices. Note, it may even change the number of considered modes. The same holds true for the
coherent state before the phase randomization, i.e. the same transformation preserves the state to be coherent. We may
conclude, then, that this type of transformations should be commutative with phase-randomization. Consider sequential
actions of the transformation (M) and phase-randomization (PR) and vice versa to show that they are indeed commutative:

⊗j |αj〉 = N0e
∑

j

←−−−
αja
†
j |0〉 PR−−→ N2

0

∞∑
n=0

(
(
∑
j

←−−
αja
†
j)(
∑
j

−−→
α∗jaj)

)n
n!n!

|0〉〈0|

↓M

N2
0

∞∑
n=0

(
(
∑
jk

←−−−−−−−−−−
|αj |eiφjMjka

†
k)(
∑
jk

−−−−−−−−−−−→
|αj |e−iφjM†jkak)

)n
n!n!

|0〉〈0| (3)

↑ PR

⊗j |αj〉 = N0e
∑

j

←−−−
αja
†
j |0〉 M−→ N0e

∑
jk

←−−−−−−
αjMkja

†
k |0〉

where N0 is normalization constant. Thus, phase randomization and transformation provided by elements of linear optics
are commutative operations.

3. Consequences of the ordering choice for a QKD

As mentioned in the introduction, phase-randomized states are employed in QKD, especially in decoy-states schemes.
The essential parts of such QKD schemes are beamsplitters as well as phase modulators (as a part of Mach-Zehnder
interferometer scheme), where the latter can be described by the following transformation: eiφa

†aa†e−iφa
†a = a†eiφ, that

also agrees with the provided point above in regard to commutativity. The main idea of phase randomization in the decoy
state method is to separate the single-photon fraction of the received mixture of Fock states. Thus, practically, the phase
randomization process, according to the conclusions made above, can be applied to the state at any point of the optical
scheme, even at the receiver’s side, and, at the first glance, that may lead to a new design of protocols. Indeed, from the
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point of view of legitimate user only, it does not affect the performance of QKD setup. However, and we shall emphasize
that, position of phase-randomization obviously may impact the information accessible to an eavesdropper.

In order to elaborate on the latter issue, we shall estimate the difference of regular coherent states and phase-
randomized coherent states in regard to provided to eavesdropper information. Thus, we propose to compare the Holevo
bound for these two types of states as rather simple example without necessity of considering special cases, that is given
by

χ = S(ρ)−
∑
i

piS(ρ(φi)), (4)

where ρ =
∑
i

piρ(φi) is the density matrix of an ensemble, S(ρ) = −Tr(ρ log2 ρ) is von Neumann entropy. Further

two phases φ0 = 0 and φ1 = π within one informational basis will be considered. Also, their probabilities of choosing

are equal, i.e. p0 = p1 =
1

2
. For coherent states, Holevo bound is well known and is given by

χCS = h
(1− e−2|β|2

2

)
, (5)

h(x) = −x log2(x)− (1− x) log2(1− x), (6)

where the latter is the binary entropy function. As for the phase-randomized states, von Neumann entropy can be estimated
by eigenvalues λi of the density matrix: S(ρ) = −

∑
i

λi log2 λi. Eigenvalues of ρ(φ) can be easily calculated by

introduced in [18] superoperator algebra: adjoint action of N (−)
iV = i

∑
nm

Vnm(
←−−−
â†nâm −

−−−→
â†nâm) provides unitary rotation

of the matrix R(φ) in K(+)
R(φ) and thus can be diagonalized, i.e.

eN
(−)
iV K(+)

R(φ)e
−N (−)

iV = K(+)

eiV R(φ)e−iV = K(+)

UR(φ)U†
, (7)

where U is given by

U =
1√

|α|2 + |β|2

−|β|eiφ |α|

|α|eiφ |β|

 . (8)

According to (7), R has two eigenvalues: 0 and |α|2 + |β|2, so ρ(φ) can be expressed in its diagonalized form as follows:

ρdiag(φ) = N

∞∑
n=0

(|α|2 + |β|2)n

n!
|n〉〈n| ⊗ |n〉〈n|. (9)

Since [
g(n)|n〉〈n| ⊗ |n〉〈n|, g(k)|k〉〈k| ⊗ |k〉〈k|

]
= 0, (10)

g(n) =
(|α|2 + |β|2)n

n!
, (11)

where [ · , · ] stands for commutator, operators under the sum can be diagonalized by the same eigenoperators, and
non-zero eigenvalue of ρ(φ) can be determined as

λ = N
∑
n

(|α|2 + |β|2)n

n!
= 1. (12)

Both ρ(0) and ρ(π) have the same non-zero eigenvalue: λ = 1. Thus, they do not contribute to the Holevo bound

quantity. However, for the ensemble density matrix ρ =
1

2
(ρ(0) + ρ(π)) introduced superoperator algebra cannot be

directly applied, since superoperators of (K(+)
R(0))

n + (K(+)
R(π))

n cannot be simultaneously diagonalized. So, firstly, we
express the density matrix in the Fock basis in its general form as follows:

ρ = N

∞∑
n=0

n∑
k,p=0

|α|2n−(k+p)|β|k+p(1 + (−1)k−p)
2
√
(n− k)!(n− p)!k!p!

|n− k〉〈n− p| ⊗ |k〉〈p|. (13)
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Note, that [
A(n, k, p), A(m, k′, p′)

]
= 0, (14)

A(n, k, p) =

n∑
k,p=0

f(n, k, p)|n− k〉〈n− p| ⊗ |k〉〈p|, (15)

f(n, k, p) =
|α|2n−(k+p)|β|k+p(1 + (−1)k−p)

2
√

(n− k)!(n− p)!k!p!
, (16)

as well, so operators A(n, k, p) under the sum for different values of n in ρ share the same eigenoperators, and thus they
can be diagonalized simultaneously. Therefore eigenvalues of ρ are determined by the sum of eigenvalues of A(n, k, p)
for all values of n. Characteristic equation for each A(n, k, p) is given by

λn−1

(
(−1)n+1λ2 +

( (−|α|2 − |β|2)n
n!

)
λ+

+
(−1)n+1|αβ|2

n!n!

n−1∑
m=0

(( 2n

2m+ 1

)
|α|4(n−m−1)|β|4m

2

))
= 0, (17)

and there are only two non-zero eigenvalues, thus

λ± = N

∞∑
n=0

λn,± = N

∞∑
n=0

(|α|2 + |β|2)n ± (|α|2 − |β|2)n

2(n!)
=

1± e−2|β|2

2
, (18)

and, respectively, the Holevo bound for two-mode phase-randomized coherent state χPR is equal to the Holevo bound for
regular coherent states χCS . Dependence of the Holevo bound on |β| is shown in Fig. 1.

FIG. 1. Dependence of the Holevo bound χ for PHAV ensemble state ρ =
1

2
(ρ(0)+ρ(π)), where ρ(φ)

is defined in Eq. (2), on the absolute value of the amplitude of the coherent state |β| as it shown in
Eq. (6)

At this point, we have shown that the phase randomization of two-mode coherent state do not influence the maximum
of accessible for an eavesdropper information. Unfortunately, consideration of special cases of eavesdropper’s interactions
with the states, whether they are regular coherent or PHAV ones, is obligatory for a security analysis. For instance, in
case of unambiguous state discrimination (USD) [19–23], an eavesdropper can easily construct positive operator-valued
measure (POVM) for a set of linearly independent pure states, such as a set of coherent states. However, mixed states may
introduce linear dependency, and in this case USD POVM cannot be constructed.

4. Implementation to subcarrier wave quantum key distribution

Another thing to note is that, from the observations, it immediately follows that multi-moded phase-randomized
coherent state can be created by applying multi-mode (generalized) beamsplitter to a single-mode phase-randomized
coherent state. Therefore, phase modulation with harmonic signal, as it is employed in subcarrier wave (SCW) QKD
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[23–27], also produce multi-moded phase-randomized coherent state, since the provided transformation of annihilation
(creation) operator is given by

ai =

S∑
j=−S

DS
ij(µ, ν, η)aj , (19)

whereDS
ij(µ, ν, η) is the Wigner D-function with S being a number of interaction modes, µ, ν, and η are some angles that

define axes of rotation [28]. Considering the stated above, it appears that the decoy-state method may be directly applied
to an SCW QKD protocol as well, providing a new variation of the protocol. However, in order to make a final decision on
that and elaborate full decoy-state protocol for an SCW setup, a few points should be addressed prior in regards. The first
one is accurate selection of single-photon fraction of the signal, that may be non-trivial problem for a milti-mode states
with high (approaching to infinity) amount of modes, and parameter estimation, such as quantum bit error of detection
events that have originated from single-photon signals. The second is required analysis of discrete phase-randomization,
as it was provided recently for the original decoy-state protocol. Estimation of closeness between full phase-randomized
states and the discrete phase-randomized [29–31] ones and conclusion regarding the necessary amount of discrete phases
for them to be close enough in case of SCW setup are essential for practical implementations.

5. Conclusion

In this paper, we have investigated two-mode PHAVs from the point of view of the superoperator formalism, that
provide useful insights on its properties. In particular, observations demonstrate preservation of state’s type (phase-
randomized) under a linear optical transformation. Therefore, this approach clearly shows that the phase randomization
transformation commutes with one provided by linear optics. In context of QKD applications, phase randomization can
be applied at any point within the optical scheme, at least, from the point of view of legitimate users.

At the same time, utilization of phase-randomization may significantly influence accessible to an eavesdropper in-
formation. Hence, we have estimated the Holevo bound for ensemble of two-mode phase-randomized coherent states

(ρ =
1

2
(ρ(0) + ρ(π))) and found it matches with the Holevo bound for regular coherent states with the same phase

difference within the ensemble. However, the Holevo bound quantifies the maximum of accessible to an eavesdropper
information and consideration of particular attacks may vary the outcome. For instance, USD probabilities are heavily
affected by the type of considered states to be measured, especially for pure and mixed states. Therefore, additional
estimations for particular cases may be considered for a full informational characterization of PHAVs.

Also, if phase-randomization commutes with transformation provided by linear optics, it appears, that phase-randomi-
zation may be directly applied to SCW QKD type of systems. It may open prospects to a new kind of SCW QKD protocol
with PHAVs.
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