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ABSTRACT We propose a mathematical model to fit the temperature-dependent thermal conductivity of
M1−xRxF2+x heterovalent solid solutions where M stands for alkaline-earth metals and R for rare-earth met-
als. These solid solutions experience composition-driven transition from the crystal-like to glass-like behavior
of thermal conductivity. When tested on Ca1−xYbxF2+x solid solutions, the model showed a potential for use
with an option for further improvements.
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1. Introduction

Heat transfer in solids is related to many diverse factors, including the crystal structure, structure perfection and
symmetry, chemical composition, temperature, and some others. Accordingly, extant theoretical models used to fit the
behavior of the thermal conductivity coefficient are intricate and ineffective (see, e.g., [1–6]). These models are frequently
far from providing good fits even for structurally simple and perfect single crystals. Especially serious problems arise in
the mathematical description of thermal conductivity in solid solutions with heterovalent ion substitutions.

Rare-earth (R) fluoride solid solutions in fluorite matrices, M1−xRxF2+x (where M = Ca, Sr, Ba, Cd, or Pb), are
some types of nanocomposites [7]. Association of oppositely charged point defects generates nanosized defect clusters in
these solid solutions; as the rare-earth doping level (x) increases, percolation of defect areas occurs. What we call an “anti-
glass” is thus formed, that is, a material where the short-range order is destroyed while the long-range order intrinsic to the
fluorite structure is preserved [7]. TheR6F36 associates are typical clusters of defects embedded in the fluorite lattice with
the replacement of the corresponding fragments M6F32 of the crystal lattice. The size of these associates is about 1.5 nm.
Each cluster is surrounded by a deformation zone. This evolution of the defect structure brings about a radical change
in physical properties of crystals. A solid solution has its thermal conductivity decreasing dramatically in response to
increasing rare-earth concentration; ultimately, the material becomes a heat insulator. The thermal conductivity coefficient
k(T ) changes its temperature-dependent trend from that typical of crystals with a low-temperature peak to a glass-like
monotone curve with k ascending as temperature rises.

There is now a significant amount of experimental thermal conductivity data forM1−xRxF2+x fluoride solid solutions
where M stands for Ca, Sr, or Ba and R for rare-earth elements (see, e.g., [8–12]). When M = Ca, the transition from
single crystals to anti-glass nanocomposites is particularly clear-cut because of the greatest difference in weight between
calcium ions and substituent ions R3+.

Liu et al. [13,14] proposed a numerical model to fit the temperature-dependent thermal conductivity inM1−xRxF2+x

solid solutions. This is a synthetic model combining Gaumé et al.’s model for the prediction of thermal conductivity in
pure and doped insulating crystals [6] and a simple third-order polynomial for the thermal conductivity coefficient of an
amorphous material. The correlation relation of Liu et al.’s model [13] is
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where A is a parameter related to the crystal-like heat transfer behavior, β is a dopant-dependent parameter related to the
non-crystalline heat transfer behavior, k0 is the thermal conductivity coefficient of an undoped crystal, d is the dopant
concentration, and B and C are the factors of the polynomial for the thermal conductivity coefficient of an amorphous
material.
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It is evidently an interesting and promising idea to sum-up the terms relating to crystalline and amorphous states.
However, the summing-up of thermal conductivity coefficients may have physical meaning only when the heat flow
passes in the sample along parallel dislike layers that have differing properties. The presence of diverse phonon scattering
centers in solid solutions makes it more appropriate to consider the sequential passage of heat flow through areas with
different thermal resistances. The Matthiessen rule [15] of the additivity of specific resistances in the approximation of
independence of scattering centers is fulfilled both for the electric current and for the heat flow [16].

Figure 1 illustrates the results we obtained when applying equation (1) to some Ca1−xYbxF2+x solid solution sam-
ples [8]. We set k0 = 3193T−1, as Liu et al. did [13]. Liu et al. [13] obtained this simple expression as a fit to the k(T )
data set for the Ca1−xYbxF2+x sample that had the least dopant level (x = 0.01 mol %) taken from our data [8]. The
fitted curves and datapoints show an appreciable divergence in the dopant concentration range from 0.7 to 9 mol %. The
measured k(T ) values exhibit like trends for the 0.7, 1, 1.5, and 3 % rare-earth samples, with temperature-diffuse k(T )
peaks typical of appreciably disordered crystal structures. However, not only do the fitted curves deviate strongly from
the datapoints, but their runs are also different: for the 0.7, 1, and 1.5 % rare-earth samples, the fitted k(T ) curves decline
throughout the range of temperatures studied (50 – 300 K), while for the 3 % sample the curve is typical of an amorphous
material.

Liu et al.’s model [13] gave a satisfactory fit of temperature-dependent thermal conductivity coefficient k(T ) data for
Ca1−xYbxF2+x solid solution crystals [8] only when equation (1) was used in “three stages”. For low dopant concen-
tration levels, Liu et al. [13] confined the model to the first term of the expression, which relates to crystalline thermal
conductivity. For moderate dopant concentrations, the entire temperature range was divided into a pair of areas. In the

FIG. 1. Temperature-dependent thermal conductivity coefficient in Ca1−xYbxF2+x solid solution sin-
gle crystals: symbols refer to measured data points [8], and lines are fitted curves calculated by model (1)
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range 50 – 100 K, the rise in thermal conductivity coefficient was fitted by the above polynomial, while after k(T ) passed
the peak temperature, the whole equation (1) was applied. For high dopant concentrations, this equation was applied to fit
the increasing thermal conductivity over the entire temperature range (50 – 300 K) with low values of the parameter A.

Our goal was to modify Liu et al.’s model [13] using Matthiessen’s rule.

2. Results and discussion

The model we proposed and used to calculate the temperature-dependent thermal conductivity coefficient for
M1−xRxF2+x heterovalent solid solutions is as follows
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where A is the amorphous specific resistance contribution; β is the parameter depending on the dopant; k0 is the thermal
conductivity coefficient of an undoped crystal; d is the dopant concentration; andD,B andC are factors of the polynomial
for the amorphous thermal conductivity coefficient.

Keeping in mind that the range of temperatures we studied starts at 50 K, which is not a very low temperature, and
the heat capacity, which directly influences the thermal conductivity coefficient, rises more slowly than by the C ∼ T 3

law, we lowered the polynomial order to the second order. Also, we added the zero order factor D, whose meaning is
the “remnant” thermal conductivity when the k(T ) is extrapolated to T = 0. Liu et al. [13] took k0 as k0 = 3193T−1.
Liu et al. [13] obtained this simple expression as a fit to the k(T ) data set for the Ca1−xYbxF2+x sample that had the
least dopant level (x = 0.01 mol %) taken from our data [8]. However, the k ∼ T−1 law is approximately fulfilled only
within a limited (near-room) temperature range, and only for some compounds. Without making serious corrections and
complications, we selected k0 = 4575T−1.08 with the least deviations from experimental data, similar to the expression
Liu et al. used [13]. As the parameter β, we took β = 0.20, which slightly differs from the β = 0.16 in Liu et al.’s
model [13].

Figure 2 shows the fits by our model (2) for the entire dataset comprised of the k(T ) values we measured for twenty
Ca1−xYbxF2+x solid solution compositions. In all cases, model (2) was used in the same manner, in the same form,
and for the entire range of temperatures studied (50 – 300 K). One can observe a very close match of the behaviors of
measured and fitted k(T ) curves over the entire concentration range.

As for the parameter A, its values that we selected show a concentration dependence little differing from the one
described by a log function with a constant term (Fig. 3).

3. Conclusion

Altogether, our mathematical model has shown a good ability to fit the temperature-dependent behavior of the thermal
conductivity coefficient in heterovalent fluoride solid solutions, with their diversity, which solid solutions experience
a composition-driven transition from the crystal-like to glass-like behavior of thermal conductivity. When tested for
Ca1−xYbxF2+x solid solution, the model has shown a promise for use with an option for further improvements.

In the future, we intend to correct the expressions for the model parameters and test the model for a wider range of
similar compounds, as well as to analyze the model parameters depending on the type of compound.
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FIG. 2. Temperature-dependent thermal conductivity coefficient for Ca1−xYbxF2+x solid solution sin-
gle crystals: symbols refer to measured data points [8], and lines are fitted curves calculated by model (2)

FIG. 3. Parameter A versus YbF3 concentration in Ca1−xYbxF2+x solid solution
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