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In memory of Pavel Pavlovich Fedorov 
(16.04.1950 – 31.03.2025) 

 

 

 

Professor DSc Pavel Pavlovich 

Fedorov, 74, passed away suddenly on 

March 31, 2025. He was an outstanding 

materials scientist, chemical engineer, 

and inventor of several new optical 

materials. 

Pavel P. Fedorov graduated from 

M.V. Lomonosov Moscow Institute of 

Fine Chemical Technology with an MS 

degree in chemical engineering in 1972, 

while majoring in chemical technology 

of rare and trace elements.  He 

successfully defended his PhD. thesis 

titled "Study of the phase diagrams of 

CaF2-(Y,Ln)F3 systems and 

polymorphism of rare earth trifluorides" 

(1977) and DSc thesis titled "High-

temperature chemistry of the condensed 

state of systems with rare earth  

trifluorides as a basis for obtaining new materials" (1991). 

After graduation, Pavel P. Fedorov worked at A.V. Shubnikov Institute 

of Crystallography of the Russian Academy of Sciences from 1972 to 2003, 

where he advanced from a laboratory assistant to a leading research fellow. In 

2000, he attained the rank of full professor of crystallography and crystal 

physics. From 2003, Prof. Fedorov was affiliated with the A.M. Prokhorov 

General Physics Institute of the Russian Academy of Sciences, where he served 

as the head of the laboratory of nanomaterials technology for photonics, head of 

the nanotechnology department, and chief research fellow until his death. 

Prof. Fedorov was well-published, authoring more than 1000 research 

papers (including 33 reviews) in peer-reviewed journals as well as 5 textbooks. 

He was also a prolific inventor, being included in 31 patents.  Pavel was also 

well-respected in the scientific community, serving not only as a reviewer for 

more than 45 international and Russian periodicals but as an editorial board 

member for several scientific journals. Areas of scientific interest included 

heterovalent isomorphism in crystals and glasses, thermodynamic theory of 

morphotropy, phase diagrams, and fluoride laser ceramics.  He developed the 

bifurcation theory for phase diagrams, publishing papers on the prediction and 

experimental detection of saddle points on melting surfaces of ternary solid 

solutions as well as generalization of the Tiller criterion for morphological 

stability of a flat crystallization front. 

Pavel was also a valued mentor, functioning as an advisor for more than 30 

MS theses, 9 PhD theses, and a scientific consultant for three DSc theses. He 



received numerous decorations and honorable citations, but more importantly, 

Pavel was a keen observer of correctness of scientific data.  He always made 

sure that his published data were correct and would never be the source of 

subsequent errata. 

Pavel had several active interests, including geology, archeology, 

anthropology, history, philosophy, and poetry.  People that knew him were 

impressed by his extremely positive outlook and optimistic worldview.  They 

will always remember him as a talented scientist, a skilled leader, a patient 

mentor, and a valued friend. 
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ABSTRACT In this paper, we consider a three-state solid-on-solid (SOS) model with two competing interactions

(nearest-neighbor, one-level next-nearest-neighbor) on the Cayley tree of order two. We show that at some

values of the parameters the model exhibits a phase transition. We also prove that for the model under some

conditions there is no two-periodic Gibbs measures.
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1. Introduction

Recent advances in nanoscience and nanotechnology have led to significant interest in extending thermodynamics

and statistical mechanics to small systems consisting of a finite number of particles, far below the thermodynamic limit

[1, 2]. In nanoscale systems, structural characteristics exhibit dynamic behavior, in contrast to the static equilibrium

observed in macroscopic phases. Phase coexistence in these systems is expected to occur over ranges of temperature and

pressure rather than at sharp points, as seen in bulk materials. Consequently, the Gibbs phase rule is no longer strictly

applicable, and various metastable phases may emerge that have no counterparts in macroscopic systems [3–5]. This

introduces challenges in understanding property relations and phase transitions in small (nano) systems. Addressing these

challenges requires the development of new working equations for thermodynamics and statistical mechanics tailored to

small systems. Notably, the concept of molecular self-assembly-central to bottom-up nanotechnology-relies on phase

transition principles, a concept highlighted by Feynman [6].

The solid-on-solid (SOS) model on a Cayley tree was introduced in [7] as a generalization of the Ising model. Since

then, significant research has focused on investigating various properties of SOS models on Cayley trees (see, e.g., [8–14];

see also [15] for a comprehensive review).

In this paper, we investigate phase transitions in the three-state SOS model on a Cayley tree of order two with nearest-

neighbor and one-level next-nearest-neighbor interactions. Phase transitions are a central topic in statistical mechanics

[16]. The existence of the Gibbs measures for a given model defines the occurrence of a phase transition [15–21]. While

previous studies [20, 21] have analyzed Gibbs measures for mixed-spin Ising models and continuous spin systems, our

work focuses on a three-state SOS model with one-level competing interactions. Unlike [21], which examines translation-

invariant measures under an external field, our study explores the impact of one-level next-nearest-neighbor interactions

on phase transitions, revealing conditions under which multiple Gibbs measures emerge. For the classical models (Ising

and Potts models) of statistical mechanics on Cayley trees within radius three interactions, this problem is well studied

(for the Ising model see, e.g., [22–30], for the Potts model see, e.g., [31–34]).

We obtain a functional equation for the model using the self-similarity of the Cayley tree. Here we consider only

the one-level next-nearest-neighbor interactions, since studying both one-level and prolonged next-nearest-neighbor in-

teractions simultaneously usually lead to functional equations which are difficult to solve (this happens even for the Ising

model, see, e.g., [35]). We prove that at some values of parameters the model possesses multiple Gibbs measures which

implies the existence of phase transition. Moreover, imposing restrictions on interactions, we obtain some explicit con-

ditions for which it is possible to establish the uniqueness or, conversely, the nonuniqueness of the Gibbs measures. We

© Karshiboev O.Sh., Rahmatullaev M.M., 2025
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FIG. 1. The Cayley tree of order two with nearest-neighbor (———) and one-level next-nearest-

neighbour (- - - - -) interactions

also show that under certain conditions, the model does not admit any two-periodic Gibbs measures. We also provide a

conjecture on the absence of two-periodic Gibbs measure for the model on the invariant set.

The paper is organized as follows. Section 2 provides definitions of the model, the Cayley tree, and the Gibbs

measures. In Section 3, we reformulate the problem of describing limiting Gibbs measures as a system of nonlinear

functional equations. Section 4 establishes the existence of phase transitions in the model. Section 5 examines two-

periodic Gibbs measures, while Section 6 summarizes the key findings and outlines potential directions for future research.

2. Preliminaries

Cayley tree. The Cayley tree Γk of order k ≥ 1 is an infinite, cycle-free graph that exactly k + 1 edges issue from

each vertex. We denote by V the set of vertices and by L the set of edges. Two vertices x and y, where x, y ∈ V , are

called nearest-neighbor if there exists an edge l ∈ L connecting them, which is denoted by l = 〈x, y〉. The distance on

this tree, denoted by d(x, y), is defined as the number of nearest-neighbor pairs of the minimal path between the vertices

x and y (where a path is a collection of nearest-neighbor pairs, two consecutive pairs sharing at least a given vertex).

For a fixed x0 ∈ V, called the root, we set

Wn(x
0) = {x ∈ V | d(x, x0) = n}, Vn(x

0) =

n⋃

m=0

Wm(x0)

and denote by

S(x) = {y ∈ Wn+1(x
0) : d(x, y) = 1}, x ∈ Wn(x

0)

the set of direct successors of x. We will omit x0 in the notations Wn, and Vn because x0 is fixed. For the sake of

simplicity, we put | x |= d(x, x0), x ∈ V . Two vertices x, y ∈ V are called second nearest-neighbor if d(x, y) = 2.

The second nearest-neighbor vertices x and y are called prolonged second nearest-neighbors if | x |6=| y | and is denoted

by > x̃, y < . The second nearest-neighbor vertices x, y ∈ V that are not prolonged are called one-level next-nearest-

neighbors since | x |=| y | and are denoted by > x, y <.

In this paper, we consider a semi-infinite Cayley Γk of order k ≥ 2, i.e. a cycles-free graph with (k+1) edges issuing

from each vertex except for x0 and with k edges issuing from the vertex x0. According to well known theorems, this can

be reconstituted as a Cayley tree [16, 31].

In the SOS model, the spin variables σ(x) take values from the set Φ = {0, 1, 2}, which is associated with each

vertex of the tree Γk. The SOS model with nearest-neighbor and one-level next-nearest-neighbor interactions is defined

by the following Hamiltonian:

H(σ) = −J
∑

〈x,y〉

| σ(x)− σ(y) | −J1
∑

>x,y<

| σ(x)− σ(y) |, (1)

where the sum in the first term ranges all nearest-neighbors, the second sum ranges all one-level next-nearest-neighbors,

and J, J1 ∈ R are the coupling constants (see Fig. 1).

3. Recursive Equations

There are multiple approaches to derive the nonlinear functional equations governing the limiting Gibbs measures for

lattice models on the Cayley tree. One approach utilizes properties of Markov random fields on Cayley trees (see, e.g., [7]).

Another approach relies on recursive equations for partition functions (see, e.g., [31]). Both approaches ultimately yield

the same equation (see, e.g., [15]). Since the second approach is more suitable for models with competing interactions,

we adopt this approach.
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Let Λ be a finite subset of V . We denote by σ(Λ) the restriction of σ to Λ and let σ(V \Λ) represent a fixed boundary

configuration. The total energy of σ(Λ), given the condition σ(V \Λ), is defined as

H(σ(Λ) | σ(V \Λ)) = −J
∑

〈x,y〉:x,y∈Λ

| σ(x)− σ(y) |

−J1
∑

>x,y<:x,y∈Λ

| σ(x)− σ(y) | −J
∑

〈x,y〉:x∈Λ,y /∈Λ

| σ(x)− σ(y) |,
(2)

The partition function ZΛ(σ(V \Λ)) over the finite volume Λ with boundary condition σ(V \Λ) is defined as

ZΛ(σ(V \Λ)) =
∑

σ(Λ)∈Ω(Λ)

exp(−βHΛ(σ(Λ) | σ(V \Λ))), (3)

where Ω(Λ) is the set of all configurations in volume Λ and β =
1

T
is the inverse temperature. Then the conditional Gibbs

measure µΛ of a configuration σ(Λ) is defined as

µΛ(σ(Λ) | σ(V \Λ)) = exp(−β H(σ(Λ) | σ(V \Λ)))
ZΛ(σ(V \Λ)) .

We consider the configuration σ(Vn), the partition function ZVn
and conditional Gibbs measure µΛ(σ(Λ) | σ(V \Λ))

over the volume Vn. For simplicity, we denote them by σn, Z(n) and µn, respectively. The partition function Z(n) can be

decomposed into the following summands:

Z(n) = Z
(n)
0 + Z

(n)
1 + Z

(n)
2 , (4)

where

Z
(n)
i =

∑

σn∈Ω(Vn):σ(x0)=i

exp(−βHVn
(σ | σ(V \Vn))), i = 0, 1, 2. (5)

Hereafter, we restrict our analysis to the case k = 2.

Denote θ = exp(βJ), θ1 = exp(βJ1). Let S(x0) = {x1, x2}. If σ(x0) = i, σ(x1) = j and σ(x2) = m, then from

(2) and (3), we we obtain the following relation

Z
(n)
i =

2∑

j,m=0

exp(βJ | i− j | +βJ | i−m | +βJ1 | j −m |)Zn−1
j Z(n−1)

m ,

so that

Z
(n)
0 =

[(
Z

(n−1)
0

)2
+ 2θθ1Z

(n−1)
0 Z

(n−1)
1 + 2θ2θ21Z

(n−1)
0 Z

(n−1)
2

+θ2
(
Z

(n−1)
1

)2
+ 2θ3θ1Z

(n−1)
1 Z

(n−1)
2 + θ4

(
Z

(n−1)
2

)2]
,

Z
(n)
1 =

[
θ2
(
Zn−1
0

)2
+ 2θθ1Z

(n−1)
0 Z

(n−1)
1 + 2θ2θ21Z

(n−1)
0 Z

(n−1)
2

+
(
Z

(n−1)
1

)2
+ 2θθ1Z

(n−1)
1 Z

(n−1)
2 + θ2

(
Z

(n−1)
2

)]
,

Z
(n)
2 =

[
θ4
(
Z

(n−1)
0

)2
+ 2θ3θ1Z

(n−1)
0 Z

(n−1)
1 + 2θ2θ21Z

(n−1)
0 Z

(n−1)
2

+θ2
(
Z

(n−1)
1

)2
+ 2θθ1Z

(n−1)
1 Z

(n−1)
1 +

(
Zn−1
2

)2]
.

Introducing the notations un(x
0) =

Z
(n)
1 (x0)

Z
(n)
0 (x0)

, vn(x
0) =

Z
(n)
2 (x0)

Z
(n)
0 (x0)

, we obtain the following system of recurrent equa-

tions: 



un =
θ2 + 2θθ1un−1 + 2θ2θ21vn−1 + u2

n−1 + 2θθ1un−1vn−1 + θ2v2n−1

1 + 2θθ1un−1 + 2θ2θ21vn−1 + θ2u2
n−1 + 2θ3θ1un−1vn−1 + θ4v2n−1

vn =
θ4 + 2θ3θ1un−1 + 2θ2θ21vn−1 + θ2u2

n−1 + 2θθ1un−1vn−1 + v2n−1

1 + 2θθ1un−1 + 2θ2θ21vn−1 + θ2u2
n−1 + 2θ3θ1un−1vn−1 + θ4v2n−1

.

(6)

Evidently,

un(x
0) =

µn(σn(x
0) = 1)

µn(σn(x0) = 0)
, vn(x

0) =
µn(σn(x

0) = 2)

µn(σn(x0) = 0)
.

If we can find the limit of un(x
0) as n tends to infinity, we will find the ratio for the probability of value 1 to the probability

of value 0 at the root for the limiting Gibbs measure. Similarly, if we can find the limit of vn(x
0) as n tends to infinity, we

will find the ratio for the probability of value 2 to the probability of value 0 at the root for the limiting Gibbs measures.

Thus, the fixed points of equation (6) describe the translation-invariant limiting Gibbs measure of the model (1).
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If u = lim
n→∞

un and v = lim
n→∞

vn then





u =
θ2 + 2θθ1u+ 2θ2θ21v + u2 + 2θθ1uv + θ2v2

1 + 2θθ1u+ 2θ2θ21v + θ2u2 + 2θ3θ1uv + θ4v2
,

v =
θ4 + 2θ3θ1u+ 2θ2θ21v + θ2u2 + 2θθ1uv + v2

1 + 2θθ1u+ 2θ2θ21v + θ2u2 + 2θ3θ1uv + θ4v2
.

(7)

Remark 1. The system (7) coincides with the classical result for the SOS model (see, e.g., [7, 9]) when θ1 = 1 (J1 = 0),
i.e. 




u =
( u+ θv + θ

θ2v + θu+ 1

)2
,

v =
( θu+ v + θ2

θ2v + θu+ 1

)2
.

(8)

It is important to note that if there is more than one positive solution for system (7), then there is more than one translation-

invariant limiting Gibbs measure corresponding to each solution. We say that a phase transition occurs for the model (1),

if system (7) has more than one positive solution.

4. Translation-invariant Gibbs measures

In this section, we investigate phase transitions in the model. We consider dynamical system (6) and study its asymp-

totic behavior. Let x = (u, v) ∈ R
2
+. The dynamical system F : R2

+ → R
2
+ is defined by





u′ =
θ2 + 2θθ1u+ 2θ2θ21v + u2 + 2θθ1uv + θ2v2

1 + 2θθ1u+ 2θ2θ21v + θ2u2 + 2θ3θ1uv + θ4v2
,

v′ =
θ4 + 2θ3θ1u+ 2θ2θ21v + θ2u2 + 2θθ1uv + v2

1 + 2θθ1u+ 2θ2θ21v + θ2u2 + 2θ3θ1uv + θ4v2
.

(9)

Then recurrent equations (6) can be rewritten as x(n+1) = F (x(n)), n ≥ 0. Recall that the point x is a periodic point of

period p if F p(x) = x, where F p(x) stands for p-fold composition of F into itself, i.e., F p(x) = F (F (. . . F (x)) . . .)︸ ︷︷ ︸
p

. A

point x ∈ R
2
+ is called a fixed point for F : R2

+ → R
2
+ if F (x) = x (see for more details [1, Chapter 1] or [36, Section 1]).

To analyze phase transitions in the class of translation-invariant limiting Gibbs measures, it is necessary to characterize

the fixed points of the mapping F (x) = x. We now describe the solutions of this equation. It follows that the set

I = {x = (u, v) ∈ R
2 : v = 1}. (10)

is invariant under the operator F . On the set I , system of equations (7) reduces to

u = f(u) (11)

where

f(u) = f(u, θ, θ1) :=
u2 + 4θ θ1 u+ 2θ2(θ21 + 1)

θ2 u2 + 2θ θ1(θ2 + 1)u+ θ4 + 2 θ2θ21 + 1
. (12)

It is easy to see that the function f(u) defined in (12) is continuous, bounded with f(0) > 0 and lim
u→+∞

f(u) < +∞.

Moreover, this function is decreasing for θ > 1 and increasing for θ < 1. Thus, it suffices to consider the case θ < 1,
since for θ > 1 the equation (11) has a unique positive solution. From properties of the function f , it follows that the

function f has at least one fixed point, say, u∗. We have

Theorem 1. Let θ < 1. For the SOS model with one-level second nearest-neighbor interactions on the binary tree on

the set I , if the condition f ′(u∗) > 1, that is,

2(1− θ2)
(
2θ3θ31 + 2θ2θ21u∗ + θθ1u

2
∗ + θ2u∗ + 2θθ1 + u∗

)

(
2θ3θ1u∗ + θ4 + 2θ2θ21 + θ2u2

∗ + 2θθ1u∗ + 1
)2 > 1 (13)

is satisfied, then there exist three distinct translation-invariant limiting Gibbs measures, i.e., the phase transition occurs.

Proof. When f ′(u∗) > 1, u∗ is unstable. Thus, a small neighborhood (u∗ − ε, u∗ + ε) of u∗ exists such that for

u ∈ (u∗ − ε, u∗), f(u) < u, and for (u∗, u∗ + ε), f(u) > u. Since f(0) > 0, there exists a solution between 0 and u∗.

Similarly, since lim
u→+∞

f(u) < +∞ there is another solution between u∗ and +∞. Thus, there exist three solutions. Since

there exist a bijection between the solutions of Eq. (11) and the translation-invariant limiting Gibbs measures, it follows

that there exist three translation-invariant limiting Gibbs measures, which implies the existence of a phase transition. This

completes the proof. �
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FIG. 2. The plot of f(u) − u when θ = 0.2, θ1 = 0.5. In this case, the function f has three positive

fixed points: ≈ 0.1461; 0.7085; 24.1453. The plot of the function is drawn for u ∈ [0, 2], u ∈ [2, 25]
separately to show all three solutions

Remark 2. Note that the set of parameters which satisfy f ′(u∗) > 1 is not empty, e.g., see Fig. 2.

Remark 3. In Theorem 1, we find sufficient conditions for Eq. (11) to possess multiple solutions, i.e., there might be

multiple solutions for the equation even if f ′(u∗) ≤ 1.

Although solving the equation (11) for both parameters seems to be difficult, we could solve the equation in the case

θ = θ1. In this case, the equation (11) reads:

u3 +Au2 +B u+ C = 0, (14)

where

A =
1

θ2

(
θ −

√√
3− 1

2

)(
θ +

√√
3− 1

2

)(
θ2 +

√
3 + 1

2

)
,

B = (θ − 1)(θ + 1)(3θ2 − 1), C = −2θ2(θ2 + 1).

Note that

√√
3− 1

2
≈ 0.605 and

1√
3
≈ 0.577. According to the Descartes Rule of Signs (see, e.g., [37], Corollary 1),

the equation (14) has at least one positive root and has at most three positive roots. We calculate the discriminant of (14)

as in [38]:

∆′(θ) := −∆(θ) = 4A3C −A2B2 − 18ABC + 4B3 + 27C2. (15)

It is known (see [38], Theorem 4.3.8) that if ∆′ > 0 then the equation (14) has one real root and two imaginary roots. If

∆′ = 0 then the equation (14) has three real roots, at least two of which are equal. If ∆′ < 0 then the equation (14) has

three distinct real roots. By the Descartes Rule of Signs, in order to have more than one distinct positive solutions, we

should necessarily have

A < 0, B > 0, ∆′ ≤ 0

which implies θ ≤ θc ≈ 0.2729, where θc solves the equation

100 θ14 + 8 θ12 + 372 θ10 − 56 θ8 + 357 θ6 − 155 θ4 + 23 θ2 − 1 = 0.

Summarizing, we have

Lemma 1. There exists a unique θc ≈ 0.2729 such that

• If θ > θc then Eq. (14) has one positive solution u1 > 0
• If θ = θc then Eq. (14) has two positive solutions u2 < u1

• If θ < θc then Eq. (14) has three positive solutions u3 < u2 < u1.

See Fig. 3

We obtain

Theorem 2. For the SOS model with one-level next-nearest-neighbour interactions on the binary tree under condition

θ = θ1 on the set I there exists θc ≈ 0.2729 such that for θ ≤ θc there is a phase transition and for θ > θc there is no

phase transition.

Remark 4. In [9], the model is considered with only nearest neighbor interactions, and the critical value is found to

be θcr ≈ 0.1414. We can see that the one-level next-nearest-interaction enlarges the phase transition interval.
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FIG. 3. The graph of functions ui = ui(θ), i = 1, 2, 3. Upper curve is u1, middle curve is u2 and lower

curve is u3

5. Two-periodic Gibbs measures

The notion of periodic Gibbs measures is discussed by Sinai [39] and Ganikhodjaev and Rozikov [40]. In this section,

we examine periodic solutions of Eq. (6). To describe the 2-periodic Gibbs measures of the model within the set I given

in (10), we will analyze the equation f(f(u)) = u, where the function f is defined by (12). In this case, the positive roots

of the equation

f(f(u))− u

f(u)− u
= 0, (16)

subject to the condition f(u) 6= u, describe the pure two-periodic Gibbs measures. By simplifying above equation, we

obtain

Au2 +B u+ C = 0 (17)

where

A := A(θ; θ1) = θ6 + 2θ4θ21 + 2θ3θ1 + θ2 + 2θθ1 + 1,

B := B(θ; θ1) = 2θ7θ1 + 4θ5θ31 + 2θ5θ1 + 6θ4θ21 + 4θ3θ31 − θ4 + 2θ3θ1 + 10θ2θ21 + 6θθ1 + 1,

C := C(θ; θ1) = θ8 + 4θ6θ2 + 4θ4θ41 + 4θ5θ1 + 8θ3θ31 + 2θ4 + 6θ2θ21 + 2θ2 + 4θθ1 + 1.

Note that A > 0, C > 0 for any θ > 0, θ1 > 0. According to Descartes’ Rule of Signs (see, e.g., [37], Corollary 1) if

B ≥ 0 then the equation (17) does not have any positive solution (see Fig. 4). Thus, we have the following assertion:

Theorem 3. If

(θ, θ1) ∈ {(θ, θ1) ∈ R
2
+ : B ≥ 0}

then for the SOS model with one-level next-nearest-neighbour interactions on the binary tree there is no two-periodic

(except for translation-invariant) Gibbs measures on the set I (10).

Based on Theorem 3, we now examine the case B < 0. If B < 0, then Eq. (17) may have two positive solutions. We

compute the discriminant of Eq. (17):

D := D(θ; θ1) = B2 − 4AC.

It follows that if B < 0 and D ≥ 0, then Eq. (17) has at least one positive solution. However, a computer analysis shows

that the set

S = {(θ, θ1) ∈ R
2
+ : D ≥ 0, B < 0}

is empty. Summarising, we make

Conjecture 1. The SOS model with one-level next-nearest-neighbor interactions on the binary tree admits no two-

periodic Gibbs measures within the set I (10).

Remark 5. a) Note that for the model (1) there might be two-periodic Gibbs measures outside of the set I (10).

b) In the case θ = θ1 one can easily see that B > 0, thus, there is no two-periodic Gibbs measures.
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FIG. 4. The plot of B(θ, θ1) for θ ∈ (0, 7) and θ1 ∈ (0, 0.2) The shaded area corresponds to B(θ, θ1) ≥ 0

6. Conclusion

In this paper, we have investigated phase transitions in the three-state solid-on-solid (SOS) model with one-level next-

nearest-neighbor interactions on a Cayley tree of order two. Leveraging the self-similarity of the Cayley tree, we have

derived a system of nonlinear recursive equations that describe the limiting Gibbs measures of the model. Our analysis

revealed that for certain parameter values, the model exhibits multiple Gibbs measures, indicating the existence of a phase

transition. Furthermore, we established explicit conditions under which the Gibbs measure is either unique or non-unique.

Additionally, we investigated the existence of two-periodic Gibbs measures and demonstrated that under certain

conditions, no such measures exist in the model. We also proposed a conjecture stating the complete absence of two-

periodic Gibbs measures on the invariant set. These results enhance our understanding of phase transitions in lattice

models with competing interactions, which play a crucial role in statistical mechanics and mathematical physics.

From a broader perspective, our findings have implications for nanoscience, where phase transitions in nanoscale

systems often exhibit unique characteristics due to finite-size effects. Studying Gibbs measures in these models provides

insight into self-assembly processes and critical phenomena in nanomaterials. Future research may extend this approach

to more complex lattice structures, higher-order interactions, or external fields to explore additional phase transition

behaviors.
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ABSTRACT We examine a model of a DNA-Ising molecule on a Cayley tree of order k ≥ 2. For this model, we

derive a system of functional equations, where each positive solution corresponds to a Gibbs measure. On

the general order Cayley tree, we can solve the model exactly. Specifically, we can find the exact value of the

critical temperature Tc for any k ≥ 2 so that, if T ≥ Tc, there is a unique translation-invariant Gibbs measure

(TIGM), and if T < Tc, there are three TIGMs. We determine the model’s typical configurations and stationary

distributions for high enough and low enough temperatures. The primary attention is focused on the systematic

study of the structure of the set of the Gibbs measures. In this paper, we present a non-trivial adaptation of

famous techniques, such as the Martinelli-Sinclair-Weitz criterion for determining the extremality of TIGMs and

the Kesten-Stigum criterion for determining the non-extremality of TIGMs. One of the important contributions of

this paper is the resolution of the extremality versus non-extremality regions for one of the TIGMs on a Cayley

tree of the general order. For the other TIGMs, the extremality and non-extremality regions are determined on

Cayley trees of orders up to 5.

KEYWORDS DNA, temperature, Cayley tree, Gibbs measure, translation-invariant measures, extreme of mea-

sure
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1. Introduction and Definitions

The Ising model is the most basic and widely used phase transition model in statistical physics, and it has a long and

significant history. The significance of the statistical theory of the Ising model is described through the fact that it is used

to investigate a wide variety of both magnetic and non-magnetic systems.

Translation-invariant, periodic and weakly periodic Gibbs measures for the Ising model on the Cayley tree were

researched by U.A. Rozikov, M.M. Rakhmatullaev [1, 2]. In the studies by P.M. Blekher and N.N. Ganikhodzhaev [3],

the existence of a continuum number of Gibbs measures was proved.

In the research performed by U.A. Rozikov, D. Gandolfo, J. Ruiz, H. Akin, S. Temur, and F.Kh. Khaydarov, the limit

Gibbs measures for the Ising model were investigated using a method based on the theory of Markov random fields and

the recurrent equations (see [4–6]).

In recent years, the thermodynamics of certain DNA models has been investigated in the field of statistical physics.

For instance, in [7–12], the Holliday junctions of the DNA molecule of the Ising, Potts, and Blume-Capel models on the

Cayley tree were studied. In [13], statistical mechanics methods, specifically the theory of Gibbs measures, are employed

to analyze the thermodynamic properties of a new model. Using these measures, the phases (states) of the DNA-RNA

system are characterized, and the conditions (in temperature) for DNA-RNA renaturation are outlined. The book [14]

discusses the latest mathematical results regarding Gibbs measures for the Potts model with q states, focusing on both

the integer lattice and Cayley trees. It also demonstrates various applications of the Potts model to real situations such as

biology, physics, financial engineering, medicine, sociology, neural networks, and other scientific fields.

It is widely acknowledged that the nucleotide sequence of DNA encodes genetic information [15]. Each DNA mole-

cule consists of a double helix made up of two complementary nucleotide chains connected by base pairs through G+C
and A + T bonds. In this context, C stands for cytosine, G for guanine, A for adenine, and T for thymine. Genetic

information is replicated by utilizing one DNA strand as a template to synthesize a complementary strand. The genetic

© Khatamov N.M., Malikov N.N., 2025
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information encoded in an organism’s DNA provides the instructions for the synthesis of all the proteins that the organism

will produce throughout its life.

The structure of DNA can be analyzed using statistical physics approaches (see [16, 17]), representing a single DNA

strand as a stochastic system of interacting bases that exhibit long-range correlations. This analysis reveals a significant

link between the structure of the DNA sequence and temperature; for instance, phase transitions in this system can be

understood as conformational changes.

It is recognized [2,18–23] that the set of Gibbs measures constitutes a non-empty, convex, and compact subset within

the space of probability measures. Additionally, every Gibbs measure can be represented as an integral of extreme Gibbs

measures, a concept referred to as extreme decomposition [18]. As a result, the extreme points play a crucial role in

characterizing the entire convex set of Gibbs measures. The extreme disordered phases of lattice models are especially

important in the context of information flow theory [2, 24–26]. In this paper, we present a non-trivial adaptation of

established methods, such as the Kesten-Stigum criterion [32] for determining the non-extremality of translation-invariant

Gibbs measures, and the Martinelli-Sinclair-Weitz method [33] for assessing the extremality of these measures.

The organization of the paper is as follows: Chapter 2 introduces the fundamental definitions from biology and math-

ematics. In Chapter 3, we formulate a system of functional equations, where each solution characterizes a family of

finite-dimensional Gibbs distributions and ensures the existence of a thermodynamic limit for these distributions. More-

over, we investigate the nature of DNA interactions by exploring the properties of Markov chains (with the corresponding

Gibbs measures). At extremely high and low temperatures, we derive stationary distributions and typical configurations

of the model. In Chapters 4 and 5, we analyze the (non)extremity problem related to the obtained TIGMs.

2. Description of DNA as a Cayley tree

Following [2, 7, 9], we review some definitions.

A Cayley tree Γk of order k ≥ 1 is an infinite tree, which is defined as a graph without cycles, where exactly k + 1
edges converge at each vertex. Let Γk = (V, L, i), where V denotes the set of vertices of Γk, L is the set of edges and i is

the incidence function that assigns each edge l ∈ L to its endpoints x, y ∈ V . If i(l) = {x, y}, x and y are called nearest

neighbors, represented as l = 〈x, y〉. The distance d(x, y), x, y ∈ V on a Cayley tree is defined as the number of edges in

the shortest path connecting x to y:

d(x, y) = min{d|∃x = x0, x1, ..., xd−1, xd = y ∈ V such that 〈x0, x1〉, ..., 〈xd−1, xd〉}.
For a fixed x0 ∈ V , we define Wn = {x ∈ V | d(x, x0) = n},

Vn = {x ∈ V | d(x, x0) ≤ n}, Ln = {l = 〈x, y〉 ∈ L | x, y ∈ Vn}. (1)

Let Z = {...,−2,−1, 0, 1, 2, ...}. In [27], it was established that the vertices of the Cayley tree can be partitioned

into equivalence classes that are indexed by integers, and for each vertex in the m− equivalence class, there is a unique

path such that the equivalence class numbers of the successive vertices along this path create an infinite sequence in both

directions: ...,m− 2,m− 1,m,m+ 1,m+ 2, .... It is called the Z−path.

Because each vertex x has its own Z−path, it is evident that the Cayley tree encompasses an infinite number of

(countable) sets of Z−paths. We define the hierarchy of the Cayley tree of a set of DNA molecules as follows.

Given a configuration σ on the Cayley tree, the presence of countably many Z− paths implies that there are also

countably many distinct DNAs. We define two DNAs as neighbors if there is an edge in the Cayley tree such that one

endpoint is part of the first DNA and the other endpoint is part of the second DNA. By construction, it is evident that there

is a unique edge for every pair of neighboring DNAs. This edge has equivalent endpoints, meaning that both ends belong

to the same equivalence class for some m ∈ Z.

A hierarchy is created by a countable, infinite set of DNA molecules where

(i) No two DNAs ever intersect,

(ii) every DNA possesses its own countable set of neighboring DNAs,

(iii) for any two neighboring DNAs, denoted as D1 and D2, there exists a unique edge l = l(D1;D2) = 〈x, y〉 where

x ∼ y that connects these DNAs, and

(iv) The ball Vn intersects only finitely many DNAs for any finite n ≥ 1.

Model. A configuration σ = σ(x), x ∈ V on the vertex set of a Cayley tree is defined as the function σ that assigns

a value σ(x) ∈ {−1, 1}, to each vertex x ∈ V , here −1 and 1 accordingly represents the base pairs A + T and C + G.

The sets of all configurations on V and Vn are accordingly denoted by Ω and Ωn. The restriction of a configuration to a

Z−path is termed DNA. This type of problem is discussed in the work [9]. Here, two potentials define the energies of the

DNA molecule set’s configuration σ: one on the Z−path and the other off the Z−path. The DNA molecule’s configuration

energies σ on the path Z and outside of it are determined by the same potentials in this work, namely, the Ising model of

the configuration energies σ of the DNA molecule set is considered

H(σ) = J
∑

〈x,y〉∈L

σ(x)σ(y), (2)
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here the vertices of the closest neighbors are indicated by 〈x, y〉, J > 0 is the coupling constant between neighboring

DNAs, and σ(x) ∈ {−1, 1}.

3. Thermodynamics of the DNA molecule system.

We establish a finite-dimensional distribution for the probability measure µ on the set Ωn of all conceivable configu-

rations on Vn

µn(σn) = Z−1
n exp{βHn(σn) +

∑

y∈Wn

hσ(y),y}, (3)

where Z−1
n is the normalizing coefficient, β =

1

T
, T > 0 is the temperature,

Hn(σn) =
∑

〈x,y〉∈Ln

σn(x)σn(y)

and {hi,x ∈ R, i = −1, 1, x ∈ Vn}
Remark 1. The quantities ehi,x define the boundary law in the sense of definition 12.10 in [18] (see also [28–30]).

In our case, these quantities define the boundary law of the biological DNA system.

We will refer to the probability distributions (3) as consistent if, for all n ≥ 1 and σn−1 ∈ Ωn−1:
∑

ωn∈ΩWn

µn(σn ∨ ωn) = µn−1(σn−1), (4)

where σn ∨ ωn is the union of configurations.

For x ∈ Vn−1, we define the set S(x) = {t ∈ Vn : 〈x, t〉}. For x ∈ V , we define x↓ as the unique point in the set

{y ∈ V : 〈x, y〉} \ S(x). It is evident that

S(x) ∩ Z-path =







{x0, x1} ⊂ V, if 〈x↓, x〉 /∈ Z− path,

{x1} ⊂ V, if 〈x↓, x〉 ∈ Z− path.

We introduce the notation

S0(x) = S(x) \ {x0, x1}, 〈x↓, x〉 /∈ Z-path,

S1(x) = S(x) \ {x1}, 〈x↓, x〉 ∈ Z-path.

A specific instance of Theorem 1 from [9] is the following theorem.

Theorem 1. The probability distributions µn in (3) are consistent if and only if the equations

zx =
θ2ẑx0

+ 1

ẑx0
+ θ2

· θ
2ẑx1

+ 1

ẑx1
+ θ2

∏

t∈S0(x)

θ2zt + 1

zt + θ2
, 〈x↓, x〉 /∈ Z-path,

ẑx =
θ2ẑx1

+ 1

ẑx1
+ θ2

∏

t∈S1(x)

θ2zt + 1

zt + θ2
, 〈x↓, x〉 ∈ Z-path,

(5)

holds for any x ∈ V \ {x0}. Here

θ = e−Jβ ,

zx = eh1,x−h−1,x , 〈x↓, x〉 /∈ Z-path,

ẑx = eh1,x−h−1,x , 〈x↓, x〉 ∈ Z-path.

Remark 2. The difference between the present paper and [9] is that here the number of parameters is reduced, but

the tree order is increased to k = 2, 3, 4, 5 and the results are obtained for these cases. At the same time, in these cases,

we consider the problem of extremity of Gibbs measures which is a new problem in the set of DNA molecules.

It follows from Theorem 1 that for any set of vectors z={(zx, ẑt)} satisfying the system of functional equations (5),

there exists a unique Gibbs measure µ and vice versa. But the analysis of this system of nonlinear functional equations is

not easy. In the next subsection, we will find several of its solutions.

Remark 3. The number of solutions of the system (5) depends on the temperature and the interaction parameters θ.

If this system has more than one solution, then there is more than one Gibbs measure (i.e., a phase transition occurs in the

DNA model).

We find solutions of the system of equations (5) of the form

zx = u, for all 〈x↓, x〉 /∈ Z-path,

ẑx = v, for all 〈x↓, x〉 ∈ Z-path.

The Gibbs measures corresponding to such solutions are called translation-invariant.
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From (5), we obtain

u =

(

θ2v + 1

v + θ2

)2(
θ2u+ 1

u+ θ2

)k−2

,

v =

(

θ2v + 1

v + θ2

)(

θ2u+ 1

u+ θ2

)k−1

,

(6)

where u, v > 0. Clearly, u = v = 1 satisfies system (6) for any k ≥ 2 and θ > 0.

Now, in the general case, we solve the system of equations (6). To do this, we divide the first equation by the second

of this system. Then we get

u

v
=

θ2v + 1

v + θ2
· u+ θ2

θ2u+ 1
,

or

(u− v)(θ2uv + θ4(u+ v) + θ2) = 0.

The last equation is true if and only if u = v. Since u, v, θ > 0, then θ2uv + θ4(u+ v) + θ2 > 0.

Therefore, it is sufficient to find a solution to the system of equations (6) in the case u = v, i.e.

u =

(

θ2u+ 1

u+ θ2

)k

. (7)

Denoting x = k
√
u from (7), we obtain

xk+1 − θ2xk + θ2x− 1 = 0. (8)

Equation (7) has a solution x = 1 regardless of the parameters (θ, k). Dividing the both parts of (7) by x − 1, we

obtain

xk − (θ2 − 1)(xk−1 + xk−2 + · · ·+ x) + 1 = 0. (9)

The following lemma gives one the number of solutions of the equation (9):

Lemma 1. [31] For each k ≥ 2, there exists exactly one critical value of θ, i.e. θc = θc(k) :=

√

k + 1

k − 1
, such that

(1) if θ < θc, then equation (9) does not have a positive solution;

(2) if θ = θc, then equation (9) has a unique solution x
(k)
1 = 1;

(3) if θ > θc, then equation (9) has exactly two solutions (both different from 1), denoted as x
(k)
2 , x

(k)
3 .

Thus, the corresponding solutions (7) are equal to

1) 1 for θ ≤ θc,

2) 1,
(

x
(k)
2

)k

,
(

x
(k)
3

)k

for θ > θc.
(10)

For k ≥ 2, we can prove the following lemma.

Lemma 2. Let k ≥ 2 and θcr =

√

k + 1

k − 1
. Then the following statements hold:

• if θ = exp(−Jβ) ≤ θc, then system (6) has a unique solution

z
(k)
1 = (u

(k)
1 , u

(k)
1 ) = (1, 1);

• if θ > θc, then system (6) has three solutions

z
(k)
1 = (u

(k)
1 , u

(k)
1 ) = (1, 1), z

(k)
2 = (u

(k)
2 , u

(k)
2 ), z

(k)
3 = (u

(k)
3 , u

(k)
3 ),

where

u
(k)
i =

(

x
(k)
i

)k

, i = 2, 3, u
(k)
2 u

(k)
3 = 1.

Let us denote by µ
(k)
i the Gibbs measures corresponding to the solutions z

(k)
i , i = 1, 2, 3. Let us define the critical

temperature

Tc := Tc(k) =
J

ln
√

k−1
k+1

.

Thus, summarising, we obtain the following result

Theorem 3. For the DNA-Ising molecule model on the Cayley tree of order k ≥ 2, the following statements are true:

1) if T ≥ Tc, then there exists a unique translation-invariant Gibbs measure µ
(k)
1 ;
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2) if T < Tc, then there exist three translation-invariant Gibbs measures µ
(k)
1 , µ

(k)
2 , µ

(k)
3 , i.e. a phase transition

occurs.

Remark 4. Note that, in comparison with work [9], the exact value of the critical temperature is found here for any

k ≥ 2, and the analysis of the equations in these works is different.

For further discussion, we will need an explicit solution of the system of equations (6), i.e. equation (7).

Equation (7) has the following explicit solutions:

• for k = 2 there is a unique solution u
(2)
1 = 1 for 0 < θ ≤

√
3 and there are three positive solutions for θ >

√
3:

u
(2)
1 = 1, u

(2)
2,3 =

θ4 − 2θ2 − 1±
√

(θ4 − 2θ2 − 1)2 − 4

2
. (11)

• for k = 3 there is a unique solution u
(3)
1 = 1 in the interval 0 < θ ≤

√
2 and there are three positive solutions in

the interval θ >
√
2:

u
(3)
1 = 1, u

(3)
2,3 =

θ6 − 3θ2 ±
√

(θ6 − 3θ2)2 − 4

2
. (12)

• for k = 4 there is a unique solution u
(4)
1 = 1 in the interval 0 < θ ≤

√

5

3
and for θ >

√

5

3
there are three positive

solutions:

u
(4)
1 = 1, u

(4)
2,3 =

(

z1 ±
√

z21 − 4

2

)4

, (13)

where

z1 =
θ2 − 1 +

√

(θ2 − 1)2 + 4(1 + θ2)

2
.

• for k = 5 there is a unique solution u
(5)
1 = 1 in the interval 0 < θ ≤

√

3

2
and for θ >

√

3

2
there are three positive

solutions:

u
(5)
1 = 1, u

(5)
2,3 =

(

z2 ±
√

z22 − 4

2

)5

. (14)

where

z2 =
θ2 +

√
θ4 + 4

2
.

Markov chains. The transition matrix of a Markov chain (with a given Gibbs measure) is defined as (see [9])

P〈x,y〉 = (P
〈x,y〉
i,j )i,j=1,2 =

















































θ2u

θ2u+ 1

1

θ2u+ 1
u

u+ θ2
θ2

u+ θ2






, 〈x, y〉 ∈ Z-path,







θ2v

θ2v + 1

1

θ2v + 1
v

v + θ2
θ2

v + θ2






, 〈x, y〉 /∈ Z-path,

where (u, v) is the solution of system (6) (mentioned in Lemma 2). Note that each matrix P〈x,y〉 does not depend on 〈x, y〉
itself, but depends on the Z−path to which it belongs.

Stationary distributions are easy to find:

π〈x,y〉 =















(

θ2u2 + u

θ2u2 + 2u+ θ2
,

u+ θ2

θ2u2 + 2u+ θ2

)

, 〈x, y〉 ∈ Z-path,
(

θ2v2 + v

θ2v2 + 2v + θ2
,

v + θ2

θ2v2 + 2v + θ2

)

, 〈x, y〉 /∈ Z-path.

The following statement is known as the ergodic theorem for positive stochastic matrices (see [18]).

Theorem 4. Let P be a positive stochastic matrix and π be the unique probability vector with πP = π (i.e. πis a

stationary distribution). Then

lim
n→∞

xPn = π

for all initial vectors x.

In the case where the Gibbs measure (and the corresponding Markov chains) are not unique, we have different

stationary states for different measures. These states depend on the temperature and the fixed measure.
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Recall that a DNA molecule is a configuration σ ∈ {−1, 1}Z on a Z−path. According to the definition of our model,

only neighboring DNAs can interact. Interaction occurs through an edge l = 〈x, y〉 /∈ Z−path connecting two DNA

molecules when the configuration at the ends of this edge satisfies σ(x) = σ(y). Neighboring DNAs do not interact if

σ(x) 6= σ(y).
The following theorem can be proved similarly to Theorem 4 in [9].

Theorem 5. In the stationary state of the DNA set we have the following statements:

1. Two neighboring DNAs do not interact with probability (here and below, index i corresponds to measure µ
(k)
i ,

i = 1, 2, 3)

Pi,k =
2v

(k)
i

θ2
(

v
(k)
i

)2

+ 2v
(k)
i + θ2

,

where (u
(k)
i , v

(k)
i ) are defined in Lemma 2 and, therefore, interact with probability 1− Pi,k.

2. Two neighboring base pairs (on the vertices of an edge l = 〈x, y〉 ∈ Z−path) in a DNA molecule have distinct

values (i.e., σ(x) 6= σ(y)) with the probability

Qi,k =
2u

(k)
i

θ2
(

u
(k)
i

)2

+ 2u
(k)
i + θ2

,

and they consequently have the same value with the probability 1−Qi,k.

Remark 5. Since each DNA molecule has a countable set of neighboring DNA molecules, at the same temperature

it can interact with several of its neighbors. In the case where DNA does not interact with its neighbors, it is isolated. We

can consider the interacting DNA molecules as a branched DNA molecule. In the case of coexistence of more than one

Gibbs measure, the branches of the DNA molecule can consist of different phases and different stationary states.

We are interested in the stationary distributions of π〈x,y〉,i,k for k = 2, 3, 4, 5 (which correspond to the Markov chain

generated by the Gibbs measure µi) in the cases when the temperature T → 0 and T → +∞. To calculate the limit, note

that u
(k)
i and v

(k)
i , i = 1, 2, 3, vary with T = 1/β.

Proposition 1. Regardless of the edge 〈x, y〉 for k = 2, 3, 4, 5, we have the following limit relations

lim
T→0

π〈x,y〉,1,k =

(

1

2
,
1

2

)

, lim
T→0

π〈x,y〉,2,k = (0, 1), lim
T→0

π〈x,y〉,3,k = (1, 0)

in case of low temperatures and

lim
T→+∞

π〈x,y〉,1,k = lim
T→Tc

π〈x,y〉,i,k =

(

1

2
,
1

2

)

, i = 1, 2, 3

in case of high temperatures.

Proof. The proof is obtained from the explicit formulas for k = 2, 3, 4, 5 for u
(k)
i and v

(k)
i , i = 1, 2, 3, respectively,

by direct calculations.

Remark 6. Using this proposition, we obtain the structure of DNA at k = 2, 3, 4, 5 for low and high temperatures.

In the case of T → 0, the DNA set has the following stationary states (configurations).

For a measure of µ
(k)
1 , the base pairs −1 = A+T and 1 = C +G at each point of the DNA molecule are found with

equal probability 1/2 for states -1 and 1.

For measure µ
(k)
2 all DNAs are rigid and interact, and σ(x) = 1 for all x ∈ Z−paths.

For measure µ
(k)
3 , all DNAs are rigid and interact, and σ(x) = −1 for all x ∈ Z−paths.

In the case T → +∞, the sequence of states -1 and 1 in the DNA molecule on the Z−path is free, the states are

independent and identically distributed. There is a state -1 with probability 1/2 and a state 1 with probability 1/2.

4. Conditions (not) extremes of measures µ
(k)
1 , µ

(k)
2 , µ

(k)
3

It is known that the set of all limit Gibbs measures (corresponding to a given Hamiltonian) forms a non-empty convex

compact subset in the set of all probability measures. In this connection, the description of all extreme points of this

convex set, i.e. extreme Gibbs measures, is of particular interest.

To check the (non)extremality of the measure, we use the methods from [32,33]. For this, we consider Markov chains

with states {−1, 1} and the matrix Pµ of probability transitions Pσ(x)σ(y) defined by the given translation-invariant Gibbs

measure µ, i.e. Pσ(x)σ(y) is the probability of a shift from the state σ(x) to the state σ(y).

A sufficient condition for the Gibbs measure corresponding to the matrix Pµ to be non-extreme is that kλ2
2 > 1,

where λ2 is the second largest eigenvalue of the matrix Pµ (the Kesten-Stigum condition).

To check this condition, we need to know the explicit form of the solution of the system (6). Exact solutions are

currently known to us only for k ≤ 5.
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It is clear that for k ≥ 2, the system of equations (6) for θ ≤ θcr =

√

k + 1

k − 1
has a unique solution (u

(k)
1 , u

(k)
1 ) =

(1, 1) and for θ > θcr =

√

k + 1

k − 1
has three solutions (u

(k)
1 , u

(k)
1 ) = (1, 1), (u

(k)
2 , u

(k)
2 ), (u

(k)
3 , u

(k)
3 ).

Let us find the conditions for non-extremality of the measures corresponding to these solutions. Since u = v for any

〈x, y〉 ∈ L. Then we obtain

P
〈x,y〉
k = Pk =









θ2u(k)

θ2u(k) + 1

1

θ2u(k) + 1
u(k)

u(k) + θ2
θ2

u(k) + θ2









. (15)

It is clear that eigenvalues of this matrix

s
(k)
1 = 1, s

(k)
2 =

u(k)(θ4 − 1)

(θ2u(k) + 1)(θ2 + u(k))
.

First, we check the condition of non-extremity of the measure µ
(k)
1 corresponding to the solution (u

(k)
1 , u

(k)
1 ) = (1, 1).

Now let us check the condition of non-extreme measures: k ·
(

s
(k)
2

)2

> 1. For the solution under consideration, this

inequality will take the form:

k ·
(

θ2 − 1

θ2 + 1

)2

> 1. (16)

By solving inequality (16), one comes to the following theorem.

Theorem 6. Let k ≥ 2. Then for the DNA-Ising model of the molecule the measure µ
(k)
1 at

θ ∈



0;

√√
k − 1√
k + 1





⋃





√√
k + 1√
k − 1

;+∞





is not extreme.

We check the condition of non-extremity of the measures µ
(k)
2 , µ

(k)
3 for k = 2, corresponding to the solutions

(u
(2)
2 , u

(2)
2 ), (u

(2)
3 , u

(2)
3 ). Now let us check the condition of non-extreme measure: 2 ·

(

s
(2)
2

)2

> 1. For solutions

(u
(2)
2 , u

(2)
2 ) and (u

(2)
3 , u

(2)
3 ) this inequality will take the form:

2 ·
(

u
(2)
2,3(θ

4 − 1)

(θ2u
(2)
2,3 + 1)(θ2 + u

(2)
2,3)

)2

> 1. (17)

In (17), substituting our expressions u
(2)
2,3 and reducing them, we obtain

2 ·
(

1

θ2 − 1

)2

> 1. (18)

Since θ >
√
3, inequality (18) does not have a solution. Thus, for k = 2, the non-extreme condition does not exist for the

solution (u
(2)
2 , u

(2)
2 ), (u

(2)
3 , u

(2)
3 ). This means that the measures corresponding to these solutions might be extreme. We

will check this in further studies.

We check the condition of non-extremity of the measures µ
(k)
2 , µ

(k)
3 for k = 3, corresponding to the solutions

(u
(3)
2 , u

(3)
2 ), (u

(3)
3 , u

(3)
3 ). Let us check the condition of non-extreme measure: 3 ·

(

s
(3)
2

)2

> 1. For solutions (u
(3)
2 , u

(3)
2 )

and (u
(3)
3 , u

(3)
3 ), this inequality will take the form:

3 ·
(

u
(3)
2,3(θ

4 − 1)

(θ2u
(3)
2,3 + 1)(θ2 + u

(3)
2,3)

)2

> 1. (19)

In (19), substituting our expressions u
(3)
2,3 and reducing them, we obtain

3 ·
(

1

θ4 − 1

)2

> 1. (20)

Since θ >
√
2, inequality (20) does not have a solution. Thus, for k = 3, the non-extreme condition does not exist for the

solution (u
(3)
2 , u

(3)
2 ), (u

(3)
3 , u

(3)
3 ). This means that the measures corresponding to these solutions might be extreme. We

will check this in further studies.
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FIG. 1. Plots of the functions 4 ·
(

s
(4)
2

)2

− 1 (left) and 5 ·
(

s
(5)
2

)2

− 1 (right)

We check the condition of non-extremity of the measures µ
(k)
2 , µ

(k)
3 for k = 4, corresponding to the solutions

(u
(4)
2 , u

(4)
2 ), (u

(4)
3 , u

(4)
3 ), i.e. we check the condition: 4 ·

(

s
(4)
2

)2

> 1. For solutions (u
(4)
2 , u

(4)
2 ) and (u

(4)
3 , u

(4)
3 ) this

inequality will take the form:

4 ·
(

u
(4)
2,3(θ

4 − 1)

(θ2u
(4)
2,3 + 1)(θ2 + u

(4)
2,3)

)2

> 1. (21)

Finding an analytical solution to inequality (21) is difficult. Using the Maple program, one can see that the last inequality

is not satisfied for any θ >

√

5

3
(see Fig. 1). Thus, for k = 4, the non-extreme condition does not exist for the solution

(u
(4)
2 , u

(4)
2 ), (u

(4)
3 , u

(4)
3 ). This means that the measures corresponding to these solutions might be extreme. We will check

this in further studies.

We check the condition of non-extremity of the measures µ
(k)
2 , µ

(k)
3 for k = 5, corresponding to the solutions

(u
(5)
2 , u

(5)
2 ), (u

(5)
3 , u

(5)
3 ). Now let us check the condition of non-extreme measure: 5 ·

(

s
(5)
2

)2

> 1. For solutions

(u
(5)
2 , u

(5)
2 ) and (u

(5)
3 , u

(5)
3 ) this inequality will take the form:

5 ·
(

u
(5)
2,3(θ

4 − 1)

(θ2u
(5)
2,3 + 1)(θ2 + u

(5)
2,3)

)2

> 1. (22)

Using the Maple program, one can see that the last inequality is satisfied for any θ >

√

3

2
(see Fig. 1). Thus, for

k = 5, the non-extreme condition does not exist for the solution (u
(5)
2 , u

(5)
2 ), (u

(5)
3 , u

(5)
3 ). This means that the measures

corresponding to these solutions might be extreme. We will check this in further studies.

5. Conditions of extremity of measures µ
(k)
1 , µ

(k)
2 , µ

(k)
3

Methods from [33] are known for studying the extremum. Let us carry out the necessary definitions from [33]. If we

remove an arbitrary edge 〈x0, x1〉 = l ∈ L from the Cayley tree Γk, then it is separated into two components Γk
x0 and

Γk
x1 , each of which is called a semi-infinite tree or a semi-Cayley tree.

Consider a finite complete subtree = that contains all initial points of the half-tree Γk
x0 . The boundary ∂= of the

subtree = consists of the nearest neighbors of its vertices that lie in Γk
x0 \ =. We identify the subtree = with the set of its

vertices. By E(A) we denote the set of all edges of A and ∂A.

In [33], two key quantities were introduced: κ and γ, which play an important role in studying the extremity of the

TI of Gibbs measures. These quantities are properties of the set of Gibbs measures {µτ
=}, where the boundary condition

τ is fixed and = is an arbitrary, initial, complete, final subtree of Γk
x0 . Given an initial subtree Γk

x0 and a vertex x ∈ =,

we write =x for the (maximal) subtree of = with initial point at x. When x is not the initial point of =, we denote by
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{µs
=} the Gibbs measure in which the ”ancestor” of x has spin s and the configuration on the lower bound of =x (i.e. on

∂=\{”ancestor” of x}) is given by Γ.

For two measures on Ω, let µ1 and µ2, let us denote the distance in the norm

‖ µ1 − µ2 ‖x=
1

2

∑

i∈{−1,1}

| µ1(σ(x) = i)− µ2(σ(x) = i) | .

Let ηx,s be a configuration η with spin at x set at s.

Following [33], we define

κ ≡ κ(µ) = sup
x∈Γk

max
x,s,s′

‖ µs
=x

− µs′

=x
‖x,

γ ≡ γ(µ) = sup
A⊂Γk

max ‖ µηy,s

A − µηy,s′

A ‖x,

where the maximum is taken over all boundary conditions η, all y ∈ ∂A, all neighbors x ∈ A of vertex y and all spins

s, s′ ∈ {−1, 1}.

First, we find the condition for the extremity of the measure µ0.

Note that κ has a particularly simple formula

κ =
1

2
max

∑

l∈{−1,1}

| Pil − Pjl |.

Then for κ we get

κ(k) =
u(k) | θ4 − 1 |

(θ2u(k) + 1)(θ2 + u(k))
.

Now, similar to the work ( [33], p. 15), we will look for an estimate for γ, in the following form:

γ = max{‖ µηy,1

A − µηy,−1

A ‖x},
where

‖ µηy,1

A − µηy,−1

A ‖x=
1

2

∑

s∈{−1,1}

| µηy,1

A (σ(x) = s)− µηy,0

A (σ(x) = s) | .

Then for γ, we also have

γ(k) =
u(k) | θ4 − 1 |

(θ2u(k) + 1)(θ2 + u(k))
.

First, we check the condition of extremity of the measure µ
(k)
1 corresponding to the solution (u

(k)
1 , u

(k)
1 ) = (1, 1).

Now let’s check the condition of extreme measures: kκ(k)γ(k) < 1, i.e.

k ·
(

u(k) | θ4 − 1 |
(θ2u(k) + 1)(θ2 + u(k))

)2

< 1.

Remark 7. Note that κ(k)γ(k) =
(

s
(k)
2

)2

.

For the solution under consideration, this inequality will take the form:

k ·
(

θ2 − 1

θ2 + 1

)2

< 1. (23)

By solving inequality (23), one comes to the following theorem.

Theorem 7. Let k ≥ 2. Then for the DNA-Ising molecule model the measure µ1 at

θ ∈





√√
k − 1√
k + 1

;

√√
k + 1√
k − 1





is extreme.

Remark 8. Note that, in comparison with the work [9], in the present work we also study extremality problems for

these measures.

Now let us check the condition of extremity of the measures µ
(k)
2 , µ

(k)
3 for k = 2, corresponding to the solutions

(u
(2)
2 , u

(2)
2 ), (u

(2)
3 , u

(2)
3 ). Now let us check the condition of the extreme measure: 2κ(2)γ(2) < 1. For solutions (u

(2)
2 , u

(2)
2 )

and (u
(2)
3 , u

(2)
3 ) this inequality will take the form:

2 ·
(

u
(2)
2,3(θ

4 − 1)

(θ2u
(2)
2,3 + 1)(θ2 + u

(2)
2,3)

)2

< 1. (24)
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In (24), substituting our expressions u
(2)
2,3 and reducing them, we get

2 ·
(

1

θ2 − 1

)2

< 1. (25)

For θ >
√
3 the above inequality is satisfied. It follows that in the case k = 2 the condition of extremity of the

measures µ
(k)
2 and µ

(k)
3 is satisfied, where they exist.

Now let us check the condition of extremity of the measures µ
(k)
2 , µ

(k)
3 for k = 3, corresponding to the solutions

(u
(3)
2 , u

(3)
2 ), (u

(3)
3 , u

(3)
3 ).

Now let us check the condition of the extreme measure: 3κ(3)γ(3) < 1. For solutions (u
(3)
2 , u

(3)
2 ) and (u

(3)
3 , u

(3)
3 ) this

inequality will take the form:

3 ·
(

u
(3)
2,3(θ

4 − 1)

(θ2u
(3)
2,3 + 1)(θ2 + u

(3)
2,3)

)2

< 1. (26)

In (26), substituting our expressions u
(3)
2,3 and reducing them, we get

3 ·
(

1

θ4 − 1

)2

< 1. (27)

For θ >
√
2 the above inequality is satisfied. It follows that in the case k = 3, the condition of extremity of the measures

µ
(k)
2 and µ

(k)
3 is satisfied, where they exist.

We check the condition of extremity of the measures µ
(k)
2 , µ

(k)
3 for k = 4, corresponding to the solutions (u

(4)
2 , u

(4)
2 ),

(u
(4)
3 , u

(4)
3 ). Now let us check the condition of the extreme measure: 4κ(4)γ(4) < 1. For solutions (u

(4)
2 , u

(4)
2 ) and

(u
(4)
3 , u

(4)
3 ) this inequality will take the form:

4 ·
(

u
(4)
2,3(θ

4 − 1)

(θ2u
(4)
2,3 + 1)(θ2 + u

(4)
2,3)

)2

< 1. (28)

This inequality is valid for all values of θ > 1.187 (see Fig. 1). Consequently, in the case k = 4 the condition of extremity

of the measures µ
(k)
2 and µ

(k)
3 is satisfied for any values of θ >

√

5

3
, i.e. in the domain of existence of these measures.

Now let us check the condition of extremity of the measures µ
(k)
2 , µ

(k)
3 for k = 5, corresponding to the solutions

(u
(5)
2 , u

(5)
2 ), (u

(5)
3 , u

(5)
3 ). We check the condition of the extreme measure: 5κ(5)γ(5) < 1. For solutions (u

(5)
2 , u

(5)
2 ) and

(u
(5)
3 , u

(5)
3 ) this inequality will take the form:

5 ·
(

u
(5)
2,3(θ

4 − 1)

(θ2u
(5)
2,3 + 1)(θ2 + u

(5)
2,3)

)2

< 1. (29)

This inequality is valid for all values of θ > 1.136 (see Fig. 1). Consequently, in the case k = 5 the condition of extremity

of the measures µ
(k)
2 and µ

(k)
3 is satisfied for any values of θ >

√

3

2
, i.e. in the domain of existence of these measures.

Thus, we have proven the following theorem.

Theorem 8. Let k ∈ {2, 3, 4, 5}. Then for the DNA-Ising molecule model with θ > θcr =

√

k + 1

k − 1
the measures

µ
(k)
2 and µ

(k)
3 are extreme.

From this theorem, using the methods of work [3], it is easy to prove the following theorem.

Theorem 9. Let k ∈ {2, 3, 4, 5}. Then for the DNA-Ising molecule model with θ > θcr =

√

k + 1

k − 1
there exists a

continuum of Gibbs measures that are not translation-invariant.

6. Conclusion

In this study, we have investigated the thermodynamic properties of the DNA-like system using the Ising model

applied to a nano-scale system. The results presented in this paper have direct implications for biophysics, particularly in

DNA studies. The Ising-like representation allows us to model the stability of DNA under thermal fluctuations, which is

crucial for applications in molecular biology, nanotechnology, and genetic sequencing. Specifically, the phase diagrams

obtained (Fig. 1) demonstrate how external parameters influence DNA stability, offering insights into experimental DNA

denaturation curves.
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Future work could extend this study by incorporating sequence heterogeneity and external factors such as ionic

strength and molecular crowding, which are known to influence DNA stability. Furthermore, experimental validation of

these theoretical predictions would help bridge the gap between computational models and real biological systems.

In summary, our study contributes to the theoretical understanding of DNA stability and denaturation by utilizing an

adapted Ising model approach. This work not only refines theoretical predictions but also offers a foundation for future

experimental and computational studies in DNA biophysics.
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ABSTRACT This paper investigates pinned gradient measures for SOS (Solid-On-Solid) models associated

with HA-boundary laws of period two, a class that encompasses all 2-height periodic gradient Gibbs measures

corresponding to a spatially homogeneous boundary law. While previous research has predominantly focused

on a spatially homogeneous boundary law and corresponding GGMs on Cayley trees, this study extends the

analysis by providing a comprehensive characterization of such measures. Specifically, it demonstrates the

existence of pinned gradient measures on a set of G-admissible configurations and precisely quantifies their

number under certain temperature conditions.
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1. Introduction

Gradient Gibbs measures (GGMs) on trees, particularly on the Cayley tree, are an important class of models in

statistical mechanics used to study interfaces and phase transitions. These measures arise in systems where the spin

variables, i.e. “heights” are defined on the vertices of a tree and exhibit a gradient interaction between neighboring sites,

meaning the energy of the system depends on the difference between spins at adjacent vertices. The main interest in

GGMs on trees lies in their ability to capture complex behaviors such as long-range correlations, coexistence of multiple

phases, and non-trivial periodic solutions, even in low-dimensional settings.

The Cayley tree, an infinite, connected, acyclic graph where each vertex has a fixed number of neighbors (called

the order of the tree), serves as a natural setting for studying such measures. Unlike lattice systems, the tree structure

introduces unique challenges due to the absence of loops, resulting in boundary effects that play a dominant role in the

behavior of the system (e.g., [1–5]).

For GGMs on trees, the construction is typically based on boundary laws as solutions of recursive equations that

describe the influence of the outer boundary on the system. This recursive structure facilitates the exploration of non-

translation-invariant solutions, including periodic or quasi-periodic Gibbs measures. Notably, the work of Zachary [6]

laid the foundation for describing Gibbs measures on trees using these boundary conditions. Models with denumerable

(non-compact) set of spin values which potentials are invariant under a joint height-shift of all values of the spin-variables

are notable in statistical mechanics, under the names interface models or gradient models. For lattice spin systems, a

theory demonstrates the existence and uniqueness of gradient Gibbs measures with a fixed tilt, assuming uniform strictly

convex potentials in dimensions d = 2 investigated by Funaki and Spohn [7]. (See however Remark 4.4 of [8] on existence

for non-convex potentials.) This extends to random models [9, 10] in dimensions d ≥ 3, while for d = 2 such random

gradient states cannot exist ( [11]) since they experience local destabilization due to the impact of quenched randomness.

In [12], the establishment of gradient Gibbs measures on trees through boundary laws is provided. Also, in the paper,

authors generalize the theory of Zachary [6, 13] for a non-normalizable boundary law (i.e. Zachary’s theory can not be

applied).

In the context of the SOS model, a classic example of an interface model, GGMs on the Cayley tree have been shown

to exhibit rich behavior, including multiple periodic solutions and phase transitions depending on the parameters of the

model. Such systems allow for the study of gradient Gibbs measures that are both translation-invariant and those that

break translation symmetry, leading to periodic configurations (e.g. [14–20]).

© Haydarov F.H., Ilyasova R.A., Mamayusupov K.S., 2025
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In this paper, we build upon the research presented in the preceding papers by investigating the existence of 2-height

periodic pinned gradient measures for the SOS model restricted to a set of G-admissible configurations on the Cayley tree

of order k ≥ 2. The notion of HA-periodicity is typically defined (see [4]) for boundary conditions. If pinned gradient

measures (GGMs) exist for such boundary conditions, they are referred to as HA-periodic pinned gradient measures

(GGMs). We define HA-boundary laws by formula (3.14). Note that if there exists spatially translation invariant GGMs

corresponding to a spatially homogeneous boundary law (i.e. {lxy} = {l}), then it is possible to call these GGMs

corresponding to HA-boundary laws. In this case, we set l(1) = l(2) := l for the family of vectors {lxy}〈x,y〉∈~L =

{l(1), l(2)}.

The results in Theorem 1 show that all three HA-boundary laws of period two define a spatially homogeneous

boundary law resulting in three GGMs (see [17, 21, 22]). On the other hand, the results in Theorem 2 indicate that

for specific ranges of the interaction parameter θ, there are exactly three 2-height periodic pinned gradient measures on a

G2-admissible configuration space: one of them is associated with a trivial boundary law and the other two are derived

from spatially inhomogeneous (HA) boundary laws. This reveals the presence of symmetry breaking in the model, where

distinct periodic solutions emerge depending on the parameter θ.

2. Preliminaries

We would like to emphasize that the information below is based on the references [12, 18, 21–23]. Let us denote

the Cayley tree of order k by Γk = (V, L), where V and L is the set of vertices and the set of edges, respectively. An

unoriented edge between two vertices x, y ∈ V is denoted by b = {x, y}. For an oriented edge going from x to y, we

write 〈x, y〉 and ~L is the set of all such edges. d(x, y) denotes the number of edges along the unique smallest path from x
to y. Let N be the collection of a finite subsets of V . The outer boundary set of Λ ∈ N is defined as

∂Λ := {x /∈ Λ : d(x, y) = 1 for some y ∈ Λ}.
Let Ω := Z

V = {(ωx)x∈V |ωx ∈ Z} denote the set of (integer-valued) height-configurations endowed with the product

σ-algebra F = P(Z)V generated by the spin variables πx : ZV → Z is defined by πx(ω) = ωx the projection onto the

coordinate x ∈ V.
Let Λ ⊂ V and πΛ : Ω → Z

Λ be the projection onto the coordinates in Λ. We can write

FΛ = σ ({πy | y ∈ Λ}) = P(Z)Λ

for the σ−algebra generated by the height-variables in the vertices x ∈ Λ.

Let ωx be the state of the configuration ω at the vertex x ∈ V and b = 〈v, w〉 ∈ ~L. The equation ∇ωb = ωw − ωv
denotes the height difference of b. We define the gradient field of ω as

∇ω := {∇ωb| b ∈ ~L}.
The set of spin values η〈x,y〉 = πy − πx is called gradient spin variables for each 〈x, y〉 ∈ ~L. The state space of

the gradient configurations is defined by Ω∇ = Z
V /Z = Z

~L. We will consider the standard σ-algebra on Z
~L which is

defined as follows

F∇ = σ
({

ηb | b ∈ ~L
})

= P(Z)
~L.

For each b = {x, y} ∈ L, a symmetric nearest-neighbor gradient interaction potential Ub : Z → R is given by

Ub(m) = Ub(−m) and the family of functions, i.e. transfer operators are defined by Qb(m) = exp (−βUb(m)) for all

m ∈ Z. Here β is interpreted as the inverse of a temperature. The following finite quantity is called [22] a Hamiltonian in

the finite volume Λ ∈ V is as follows

HU
Λ (ω) =

∑

b∩Λ 6=∅

Ub (∇ωb) , Λ ∈ N .

In the SOS model on a Cayley tree, Ub is an unbounded symmetric nearest-neighbor gradient interaction potential

defined by

Ub(ωx, ωy) = Jb|ωx − ωy|,
where Jb ∈ R is a coupling constant, which determines the energy cost of height differences.

In the article, it is assumed that Jb = J > 0, indicating the spatial homogeneity of the coupling constant. Further-

more, the system’s energy increases as the height difference between adjacent sites increases. Thus, we can conclude that

the parameter θ := e−Jβ lies within the interval 0 < θ < 1.

The family of probability kernels [22] for the given HamiltonianHU
Λ , i.e., (γΛ)Λ∈N from (Ω,FΛc) to (Ω,F) is given

by

γΛ(A|ω̃) = Z−1
Λ (ω̃)

∫

A

exp









−
∑

b⊂Λ

Ub (∇ωb)−
∑

i∈Λ,j∈Λc

i∼j

U{i,j} (ωi − ω̃j)









dωΛ (2.1)
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for all A ∈ F , where ZΛ(ω̃) denotes a normalization constant and dωΛ is the counting measure on ΩΛ = Z
Λ.

A transfer operator Qb = Q induces local Gibbsian specification

γ = {γΛ : F × Ω → [0, 1]}Λ∈N

by the assignment which represent (2.1) in the form

γΛ(σΛ = ω̃Λ|ω) =
1

ZΛ(ω∂Λ)





∏

{x,y}⊂Λ

Q(ω̃x − ω̃y)





∏

x∈Λ,y∈Λc

x∼y

Q(ω̃x − ωy)

for every Λ ∈ N , ω̃ ∈ ΩΛ and ω ∈ Ω. Here, the partition function ZΛ gives for every ω ∈ Ω the normalisation constant

ZΛ(ω) = ZΛ(ω∂Λ) turning γΛ(·|ω) into a probability measure on the height configuration space (Ω,F), ωΛ and ΩΛ

denote the restrictions on Λ ∈ V.
The kernels γΛ can be projected to the gradient Gibbs specification

γ∇ = {γ∇Λ : F∇ × Ω∇ → [0, 1]}Λ∈N .

The outer gradient σ-algebra [22] on Ω∇ is defined by

T ∇
Λ := σ((ηb)b⊂Λc , [η]∂Λ) ⊂ F∇.

The kernels [21] are

γ∇Λ (ηΛ = ζΛ|ζ) := γΛ(σΛ = ωΛ|ω)
for any ω ∈ Ω such that (∇ω)Λc = ζΛc and [∇ω]∂Λ = [ζ]∂Λ.

Then a collection Σ :=
(

V,N ,Ω∇,
{

T ∇
Λ

}

Λ∈N

)

can be considered as a lattice system. Let γ = {γΛ}Λ∈N be a local

specification on lattice systems. Then a probability measure µ ∈ P(F) is called a Gibbs measure with specification γ if

µ = µγΛ for each Λ ∈ N . This definition of Gibbs measures originates from Dobrushin and Lanford and Ruelle (see

[24–26]), and the last equations are called the DLR-equations. A Gibbs measure with the specification γ∇ = {γ∇Λ (·|ζ)|ζ ∈
Ω∇,Λ ∈ N} is called a gradient Gibbs measure on the lattice system Σ.

3. Pinned gradient measures corresponding to two periodic boundary laws

It is known that the problem of expressing periodic Gibbs measures corresponding to various Hamiltonians typically

reduces to solving systems of algebraic equations. Due to the lack of general formulas for solving such systems, many

difficulties arise. Initially, we analyze the solutions of the following system of equations:


















x =

(

ay + b

cy + a+ b− c

)k

y =

(

ax+ b

cx+ a+ b− c

)k
, (3.1)

which is a generalization of systems of equations encountered in many papers [14,15,17,27]. As an example for the case

b 6= c, one can apply the result of the following proposition to the system of equations (4.3) analyzed in [27]. Applications

of our proposition for the case b = c will be explored later in Theorems 1 and 2.

Proposition 1. Let a, b, c > 0 be real numbers satisfying the condition a + b − c > 0. The number of positive solutions

(x, y) to the system (3.1) is determined by the value of k ∈ N and the relationship between a and c:

(1) If a = c or k = 1, then the system has exactly one solution which is (x, y) = (1, 1).

(2) If a > c and k >
a+ b

a− c
, then the system has exactly three distinct solutions which satisfy x = y.

(3) If a < c and k >
a+ b

c− a
, then the system also has exactly three distinct solutions one solution satisfies x = y and

the other two satisfy the condition x 6= y.

Proof. Let’s start with the following notation for simplicity

f(x) :=

(

ax+ b

cx+ a+ b− c

)k

. (3.2)

The case a = c is indeed quite trivial, as in this scenario, the function simplifies to f(x) = 1 for all positive x.

Consequently, there is only one pair of solutions, which is (x, y) = (1, 1).
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For the case a 6= c, the function f(x) exhibits specific properties depending on the relationship between a and c. The

derivative of f(x) is given by

f ′(x) =
k(a+ b)(a− c)f(x)

(ax+ b)(cx+ a+ b− c)
.

The function f(x) is bounded, strictly increasing when a > c, and strictly decreasing when a < c. For x > 0, it

holds that f(0) =

(

b

a+ b− c

)k

> 0, and as x→ ∞ we find that lim
x→∞

f(x) =
(a

c

)k

.

Now assume that a < c. In this case, we conclude that there exists a unique solution, given by x = y = 1 on the

assumption that x = y .

Let x 6= y. Now we find the conditions for the existence of solutions with x 6= y in the system (3.1). To do this, we

will study the equation

f(f(x)) = x. (3.3)

Since the function f(x) is invertible for x > 0, we can rewrite the equation as f(x) = f−1(x) := g(x), where

g(x) = f−1(x) =
(a+ b− c) k

√
x− b

−c k
√
x+ a

. (3.4)

From f(x) > 0, it follows that g(x) > 0. Therefore, the domain of the function g(x) is (x1, x2), where


















x1 =
(a

c

)k

< x <

(

b

a+ b− c

)k

= x2, if a < c

x1 =

(

b

a+ b− c

)k

< x <
(a

c

)k

= x2, if a > c

. (3.5)

Now let us consider the case a < c. Note that by solving the equation h(x) = 0 for the function h(x) = ln
f(x)

g(x)
=

ln f(x)− ln g(x), we obtain the same solution set as for equation (3.3). Clearly, x = 1 is a solution to this equation, i.e.,

h(1) = 0. Using the derivatives

f ′(x) =
k(a+ b)(a− c)f(x)

(ax+ b)(cx+ a+ b− c)

and

g′(x) =
(a+ b)(a− c)g(x)

k
k
√
xk−1 [(a+ b− c) k

√
x− b] (−c k

√
x+ a)

,

we have

h′(x) =
f ′(x)

f(x)
− g′(x)

g(x)
=

(a+ b)(a− c)

k
·
(

k2

(ax+ b)(cx+ a+ b− c)

)

− (a+ b)(a− c)

k
· 1

k
√
xk−1 [(a+ b− c) k

√
x− b] (−c k

√
x+ a)

.

Denoting k
√
x = t, we rewrite the derivative h′(x) as

v(t) =
(a+ b)(c− a)p(t)

ktk−1(atk + b)(ctk + a+ b− c) [(a+ b− c)t− b] (−ct+ a)
,

where
p(t) = act2k + k2c(a+ b− c)tk+1 − (k2 − 1)(a2 + ab+ bc− ac)tk+

+ k2abtk−1 + b2 + ab− bc.
(3.6)

Let k = 1. Then the function h′(x) gets always positive (a < c) or negative (a > c) value for any x ∈ (x1, x2) . Therefore,

the only way for the function h(x) to cross the x-axis is at the point x = 1.
Let k ≥ 2. Then by Descartes’ rule [28] of signs, the polynomial (3.6) has at most two positive roots. It is easy to

verify that

lim
x→x1

h(x) = −∞, h(1) = 0, lim
x→x2

h(x) = +∞. (3.7)

Hence, the equation h(x) = 0 has at least one solution x0 for x < 1 and at least one solution x′0 for x > 1 if

h′(1) < 0. From this condition,

h′(1) =
(a+ b)(a− c)

k
·
(

k2

(a+ b)2
− 1

(a− c)2

)

< 0, (3.8)

we find that k >
a+ b

c− a
since

a+ b

c− a
> 0. Moreover,

lim
x→x1

h′(x) = +∞, lim
x→x2

h′(x) = +∞ (3.9)
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for all k >
a+ b

c− a
. From the condition h′(1) < 0, it follows that the function h(x) has exactly two critical points ξ1 and

ξ2 such that x1 < ξ1 < 1 and 1 < ξ2 < x2 (see Figure 1).

FIG. 1. The graph illustrates the number of possible solutions to the equation (3.3) for a < c and k >
a+ b

c− a

This indicates that h(x) is increasing on the intervals x1 < x < ξ1 and ξ2 < x < x2 and decreasing on the interval

ξ1 < x < ξ2. Therefore, the equation h(x) = 0 has exactly two solutions except for 1, denoted as x0 < 1 < x′0.

Finally, since the function f(x) is strictly decreasing for a < c, from the second equation of the system (3.1), we have

f(x0) := y0 > f(1) = 1 > f(x′0) := y′0. We conclude that x0 6= y0 (x′0 6= y′0) for the pairs of solutions (x0, y0) and

(x′0, y
′
0) corresponding to x0 and x′0 respectively. Thus, the system of equations (3.1) has exactly three distinct solutions

under the condition k >
a+ b

c− a
.

The case a > c is analogous to the case a < c, so we will provide a brief proof. In this case the function f is a strictly

increasing function for x > 0. Assume that y < x and (x, y) is a solution to (3.1). This would imply f(x) < f(y) but due

to the fact that f is strictly increasing, we would have x < y which contradicts our assumption. The case x < y proceeds

analogously and consequently there can not be a solution x 6= y if a > c.
Therefore, it suffices to consider the case of x = y as the solutions to the system (3.1).

After denoting k
√
x := z, the system of equations (3.1) becomes the following equation

z =
azk + b

czk + a+ b− c
. (3.10)

Alternatively, using the function (3.4), the equation (3.10) can be rewritten in the following form

zk = g(zk) =
(a+ b− c)z − b

−cz + a
. (3.11)

In this case, for the values k
√
x1 := z1 and k

√
x2 := z2 in the domain (z1, z2) of the function g(zk) the equations in

(3.7) take the form

lim
z→z1

h(z) = +∞, h(1) = 0, lim
z→z2

h(z) = −∞.

The inequality corresponding to (3.8) becomes

h′(1) =
(a+ b)(a− c)

k
·
(

k2

(a+ b)2
− 1

(a− c)2

)

> 0, (3.12)

and the derivative condition in (3.9) transforms to

lim
z→z1

h′(z) = −∞, lim
z→z2

h′(z) = −∞,

for k >
a+ b

a− c
. Under this condition, the system (3.1) admits exactly two solutions, apart from the trivial case z = y = 1

(see Figure 2).

�
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FIG. 2. The graph depicts the number of possible solutions to the equation (3.11) in the case a > c and

k >
a+ b

c− a

Definition 1. [22] A family of vectors {lxy}〈x,y〉∈~L, where lxy ∈ (0,∞)Z, is called a boundary law for the transfer

operators {Qb}b∈L if for each 〈x, y〉 ∈ ~L, there exists a constant cxy > 0 such that the consistency equation

lxy(ωx) = cxy
∏

z∈∂x\{y}

∑

ψz∈Z

Qzx(ωx − ψz)lzx(ψz) (3.13)

holds for every ωx ∈ Z. A boundary law is called q-periodic if lxy(ωx + q) = lxy(ωx) for every oriented edge 〈x, y〉 ∈ ~L
and each ωx ∈ Z.

Gradient measures and gradient Gibbs measures are constructed using q-periodic boundary laws on the space of

gradient configurations (see Chapters 3 and 4 in [22]). Theorem 3.1 establishes that for a vertex Λ ∈ N and class label

s ∈ Zq , any q-periodic boundary law {lxy}〈x,y〉∈~L for {Qb}b∈L defines a consistent family of probability measures

(pinned gradient measures) on Ω∇. Chapter 4 discusses a spatially homogeneous boundary law, with the gradient Gibbs

measure given by equation (4.3).

Let Gk be the free product of k + 1 cyclic groups of order two, with generators a1, a2, . . . , ak+1. It is known that

there is a one-to-one correspondence between the set of vertices V of the Cayley tree Γk and the groupGk(see Proposition

1.1 in [4]).

Any element x ∈ Gk has the following form

x = ai1ai2 ...ain , where 1 ≤ im ≤ k + 1, m = 1, ..., n.

The number n is called the length of the word and the number of letters ai, i = 1, ..., k+1, that enter the non contractible

representation of the word x is denoted by ωx(ai). Let Nk = {1, . . . , k + 1}, and define the set

HA =

{

x ∈ Gk |
∑

i∈A

ωx(ai) is even

}

.

By Proposition 1.2 in [4], for any ∅ 6= A ⊆ Nk, the set HA ⊂ Gk is a normal subgroup of index two.

Now, we define a spatially inhomogeneous boundary law associated withHA (aHA-boundary law), i.e., {lxy}〈x,y〉∈~L =

{l(1), l(2)} assuming A = Nk as follows

lxy =

{

l(1), if x ∈ HA and y ∈ Gk \HA

l(2), if y ∈ HA and x ∈ Gk \HA

. (3.14)

It is essential to observe that when l(1) = l(2), the boundary conditions are spatially homogeneous [17, 21, 22].

Conversely, when l(1) 6= l(2), the boundary conditions become spatially inhomogeneous, a phenomenon that is further

investigated in this paper.

Now we define the vectors z = (...z−2, z−1, 1, z1, z2,...) and t = (...t−2, t−1, 1, t1, t2,...) for simplicity under the

assumption lxy(0) 6= 0 in the following way
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lxy(i)

lxy(0)
=

{

zi, if x ∈ HA and y ∈ Gk \HA

ti, if y ∈ HA and x ∈ Gk \HA

,

where i ∈ Z.

Let G be a given graph. We specify the set of G-admissible configurations as follows.

Definition 2. [14] A configuration ω is called a G-admissible configuration on the Cayley tree if {ωx, ωy} is the edge of

the graph G for any pair of nearest neighbors x, y in V .

Let ΩG denote the set of G-admissible configurations, Ω∇
G indicate the set of G-admissible gradient configuration

space and L(G) be the set of edges of a graph G. We let A ≡ AG = (aij)i,j∈Z
denote the adjacency matrix of the graph

G, i.e.,

aij = aGij =











1 if {i, j} ∈ L(G)

0 if {i, j} /∈ L(G)
.

Applying the matrix A to the system of boundary law equations (3.13) for the SOS model, restricted to the set of

G-admissible configurations, results in






























zi =

(

ai0θ
|i| +

∑

j∈Z0
aijθ

|i−j|tj

a00 +
∑

j∈Z0
a0jθ|j|tj

)k

ti =

(

ai0θ
|i| +

∑

j∈Z0
aijθ

|i−j|zj

a0,0 +
∑

j∈Z0
a0jθ|j|zj

)k
, (3.15)

where i ∈ Z0 := Z \ {0}.

It should be noted that for any graph with the vertex set Z, the system of equations (3.15) simplifies to the form (3.1).

It is easily demonstrable that by altering the graph, one can derive parameter values b and c such that b 6= c. Specifically,

the scenario where b = c is examined for two selected graphs throughout the paper.

Let G1 be the complete graph with vertex set Z, where each vertex has a loop, i.e., aij = 1 for all i, j ∈ Z. Using

the transfer operator defined in the preliminaries and the parameter θ = e−Jβ (with 0 < θ < 1), the system of equations

(3.15) for our model becomes































zi =

(

θ|i| +
∑

j∈Z0
θ|i−j|tj

1 +
∑

j∈Z0
θ|j|tj

)k

ti =

(

θ|i| +
∑

j∈Z0
θ|i−j|zj

1 +
∑

j∈Z0
θ|j|zj

)k
. (3.16)

We study the 2-periodic solutions of (3.16), assuming ui = k
√
zi and vi =

k
√
ti. In the 2-periodic case, the sequences

are given by

l(1) ∼ (..., u1, 1, u1, 1, u1, ...),

l(2) ∼ (..., v1, 1, v1, 1, v1, ...).

By denoting u1 := x and v1 := y we obtain the following system of equations


















x =
(θ2 + 1)yk + 2θ

2θyk + θ2 + 1

y =
(θ2 + 1)xk + 2θ

2θxk + θ2 + 1

. (3.17)

Theorem 1. Let θcr =

√
k − 1√
k + 1

with k ≥ 2. Then 2-height periodic boundary law of the type (3.14) determines 2-

height periodic spatially homogeneous boundary law. Consequently, for the SOS model on Cayley tree of order k with the

parameter θ ∈ (0, θcr) there exist precisely three 2-height periodic GGMs on Ω∇
G1

.

Proof. We apply Proposition 1 with parameters a = θ2+1, b = 2θ, and c = 2θ. It’s clear that we are in the regime where

a > c and consequently we obtain three different GGMs corresponding to the spatially homogeneous boundary law, i.e.

l(1) = l(2).
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To determine the conditions for the existence of three gradient Gibbs measures corresponding to the subgroup HA,

we solve the following inequality as stated in part (2) of Proposition 1

k >
(θ + 1)2

(θ − 1)2
.

Through straightforward calculations, we establish the interval 0 < θ < θcr within which the system of equations

(3.17) possesses exactly three solutions. Here, θcr is defined as θcr =

√
k − 1√
k + 1

for k ≥ 2. �

Now we consider the graph G2 containing Z as the vertices, i.e. one-dimensional lattice graph where additionally

each vertex is connected to itself, considered in [14] (see Figure 3) with its adjacency matrix

aij =

{

1, if i = j or |i− j| = 1, i, j ∈ Z

0, otherwise
.

FIG. 3. The graph G2 with the set Z of vertices

Then the system of equations (3.15) on the space ΩG2
for the 2−periodic case becomes























x =

(

y + 2θ

2θy + 1

)k

y =

(

x+ 2θ

2θx+ 1

)k
. (3.18)

Theorem 2. Let θ−cr =
k − 1

2k + 2
for k ≥ 2 and θ+cr =

k + 1

2k − 2
for k ≥ 4. Then for the SOS model restricted to a set of

G2-admissible configurations on the Cayley tree of order k the following assertions hold

• The boundary law (3.14) associated with HA coincides with the spatially homogenous boundary law for θ ∈
(0, θ−cr) which provides exactly three 2-height periodic GGMs on Ω∇

G2
.

• The boundary law (3.14) associated withHA becomes spatially inhomogeneous for θ ∈ (θ+cr, 1) resulting in three

2-height periodic pinned gradient measures on Ω∇
G2

.

Proof. For the graph G2 in Figure 3 we derive the parameters a = 1, b = 2θ, and c = 2θ to apply Proposition 1 once

more.

Case 1. Let 0 < θ <
1

2
. Then, it is evident that a > c, leading to three distinct GGMs corresponding to the spatially

homogeneous boundary law, i.e., l(1) = l(2). In this case, we use the inequality k >
a+ b

a− c
stated in part (2) of Proposition

1 in the form

k >
2θ + 1

1− 2θ
.

By solving last inequality, we obtain 0 < θ < θ−cr, where θ−cr =
k − 1

2k + 2
.

Case 2. Let
1

2
< θ < 1. Then, it is evident that a < c, resulting in spatially inhomogeneous, i.e., l(1) 6= l(2), boundary

laws which always defines gradient measures by the equation (3.4) in [22]. In this case, the inequality k >
a+ b

c− a
stated

in part (3) of Proposition 1 becomes

k >
2θ + 1

2θ − 1
.

Thus, it follows that the system of equations (3.18) has exactly three solutions, provided that θ+cr < θ < 1, where

θ+cr =
k + 1

2k − 2
. It is important to note that this condition on θ is valid when the order of the Cayley tree is strictly greater

than 3. �
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Remark 1. Are the two pinned gradient measures identified in Theorem 2 classified as gradient Gibbs measures (GGMs)?

This question remains open.

4. Conclusion

Our main goal is to quantify the number of pinned gradient measures for the SOS model on the Cayley tree of order

k ≥ 2 by analyzing boundary law equations (3.13) under certain temperature conditions. This work distinguishes itself

from previous studies, which have focused on spatially homogeneous q-periodic boundary laws and their corresponding

GGMs (see [14–19, 22]). The paper is organized as follows: we first prove Proposition 1, then use it to solve an infinite

system of equations (3.13), i.e., to find 2-periodic boundary laws. In Theorem 1, we demonstrate the existence of three

GGMs on the Cayley tree of order k ≥ 2 for certain values of θ using different methods (see [17, 21, 22]). We also

determine the critical temperature condition, i.e., θ ∈ (θ+cr, 1), where spatially inhomogeneous boundary laws of period

two defines pinned gradient measures for the SOS model restricted to the G2-admissible configuration space.
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[18] Henning F., Külske C., Le Ny A., and Rozikov U.A. Gradient Gibbs measures for the SOS model with countable values on a Cayley tree. Electron.

J. Probab, 2019, 24(104), 23 pages.

[19] Ilyasova R.A. Height-periodic gradient Gibbs measures for generalised SOS model on Cayley tree. Uzbek Mathematical Journal, 2024, 68(2),

P. 92–99.

[20] Rozikov U.A. Mirror Symmetry of Height-Periodic Gradient Gibbs Measures of an SOS Model on Cayley Trees. J. Stat. Phys., 2022, 188, 26

pages.
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ABSTRACT The study is focused on investigation of p-adic Gibbs measures for the q-state Potts model with an

external field and determination of the conditions for the existence of a phase transition. In this work, we derive

a functional equation that satisfies the compatibility condition for p-adic quasi-Gibbs measures on a Cayley

tree of order k ≥ 2. Furthermore, we prove that if |q|p = 1 there exists a unique p-adic Gibbs measure for this

model. Additionally, for the Potts model on a binary tree, we identify three p-adic quasi-Gibbs measures under

specific circumstances: one bounded and two unbounded, which implies a phase transition.
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1. Introduction

A comprehensive understanding of the interactions between individual atoms and molecules within nanosystems,

along with their statistical mechanical modeling, is crucial for the development in nanotechnology [1]. To formulate the

thermodynamics of small systems, one has to start evaluating thermodynamics from the first principles reviewing the

concepts, laws, definitions, and formulations, and to draw a set of guidelines for their applications to small systems [2–5].

Such questions as property relations and phase transitions in small (nano) systems are subjects to be investigated and

formulated provided the formulation of working equations of thermodynamics and statistical mechanics of small systems.

It is worth mentioning that the molecular self-assembly (bottom-up technology) that was originally proposed by Feynman

[6] has its roots in phase transitions.

p-adic probabilities, a novel concept in theoretical physics, have spontaneously appeared in physical models based on

p-adic numbers, similar to the p-adic string, first proposed by I. Volovich [7]. In [8], a theory of stochastic processes was

developed for values in p-adic and more general non-Archimedean fields. These processes have probability distributions

with non-Archimedean values. A non-Archimedean analog of the Kolmogorov theorem was established, enabling the

construction of a wide range of stochastic processes using finite-dimensional probability distributions. This foundation

has opened the door for investigating and developing certain problems in statistical mechanics within the framework of

p-adic probability theory.

The Potts model is a statistical mechanics model that generalizes the Ising model to allow for more than two com-

ponents [9]. It has been extensively studied in recent years due to its rich mathematical structure and its applications

to various physical systems [10, 11]. The studies in [12–16] for the Ising, in [17–19] for the Potts have contributed to

our understanding of these models. Note that papers [20–23] are focused on translation-invariant p-adic Gibbs measures

In [24–29], different aspects or specific cases of non-periodic, constructive p-adic quasi-Gibbs measures for the Ising and

Potts models are explored.

In this paper, we investigate translation-invariant p-adic quasi Gibbs measures for the Potts model with an external

field. The theory immediately shows the effect of an external force. For example, in [30], translation-invariant p-adic

Gibbs measures were investigated in the Ising model with an external field, and a phase transition was identified for

p ≡ 1(mod 4). In [31], weakly periodic Gibbs measures were investigated for the same model, and the existence of a

phase transition was shown for any odd prime number. Moreover, in [22], it was proved: if |q|p = 1, then there is no

translation-invariant p-adic Gibbs measure for the Potts model corresponding to hx on the set Ep \ {1}. However, we

© Rahmatullaev M.M., Samijonova N.D., 2025
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prove that, if |q|p = 1, then there is a unique p-adic Gibbs measure for the Potts model with an external field. Therefore,

we apply those ideas to a more complicated situation.

The purpose of this research is to examine p-adic Gibbs measures for the q-state Potts model with an external field

and to provide sufficient conditions for a phase transition. In contrast to a real case, such measures for the model are not

explained in a p-adic setting. In this work, we have derived a functional equation satisfying the compatible condition for

p-adic quasi-Gibbs measures on a Cayley tree of order k for the given model. Moreover, we have proved the existence

of a unique p-adic Gibbs measure for this model. Additionally, for the Potts model on a binary tree, we have determined

under the some specific cases three p-adic quasi Gibbs measures which one of them is bounded, and others are unbounded

and derived a new conditions for the existence of a phase transition.

1.1. p-adic numbers

Let Q be a field of rational numbers. For a fixed prime number p, every rational number x 6= 0 can be represented in

the form x = pr
n

m
where, r, n ∈ Z, m is a positive integer, and (n, p) and (m, p), where number r is called a p-order of

x and it is denoted by ordp(x) = r. The p-adic norm of x is given by

| x|p =

{
p−r, x 6= 0,

0, x = 0.

The norm of | . |p is non-Archimedean, i.e., it satisfies the strong triangle inequality:

| x+ y |p≤ max{| x |p, | y |p}, ∀x, y ∈ Q.

We note that the following essential properties are relevant to the non-Archimedeanity of the norm:

i) if | x|p 6=| y|p, then | x± y |p= max{| x|p, | y|p};
ii) if | x|p =| y|p, then | x− y|p ≤| x|p.

The completion of Q with respect to the p-adic norm defines the p-adic field Qp. Any p-adic number x 6= 0 can be

uniquely represented in the canonical form x = pγ(x)(x0+x1p+x2p
2+ ...), where γ(x) ∈ Z and the integers xj satisfy:

x0 > 0, 0 ≤ xj ≤ p− 1. In this case | x|p = p−γ(x).

An integer b ∈ Z is called quadratic residue modulo p if the congruent equation x2 ≡ b(mod p) has a solution x ∈ Z.

Let p be odd prime and a be an integer not divisible by p. The Legendre symbol (see [32]) is defined by

(
b

p

)
=





1, if b is quadratic residue of p,

−1, if b is quadratic nonresidue of p.

(1)

Let a ∈ Qp, a 6= 0, a = pγ(a)(a0 + a1p+ a2p
2 + ...), 0 ≤ aj ≤ p− 1, j ∈ N, a0 > 0.

Lemma 1. [33] The equation x2 = a has a solution in x ∈ Qp iff the followings hold:

i) γ(a) is even;

ii) a0 is a quadratic residue modulo p if p 6= 2; the equality a1 = a2 = 0 hold if p = 2.

Lemma 2.(Hensel’s lemma [34]) Let f(x) = c0 + c1x + ... + cnx
n be a polynomial whose coefficients are p-adic

integers. Let f ′(x) = c1 + 2c2x + ... + ncnx
n−1 be the derivative of f(x). Let x∗ be a p-adic integer such that

f(x∗) ≡ 0(mod p) and f ′(x∗) 6≡ 0(mod p). Then there exists a unique p-adic integer root x∗ such that

f(x∗) = 0 and x∗ ≡ x∗(mod p).

In [35], the authors introduced new symbols, ”O” and ”o”, which simplify certain calculations. Essentially, these

symbols help us to write down the calculations in our work more concisely. To understand their meanings, one can note:

for a given p-adic number x, O[x] refers to a p-adic number whose norm satisfies | x |p=| O[x] |p. On the other hand,

o[x] refers to a p-adic number such that | o[x] |p<| x |p. For example, if x = 1+ p+ p3, we write O[1] = x, o[1] = x− 1

or o[p2] = x− 1− p.

For any a ∈ Qp and r > 0, we denote

B(a, r) = {x ∈ Qp : | x− a|p < r},

and the set

Zp = {x ∈ Qp :| x |p≤ 1}, Z∗
p = Zp\pZp.

Zp is called the set of p- adic integers, Z∗
p is called the set of p- adic units. Note that the p-adic exponential is defined by

the series

expp(x) =

∞∑

n=0

xn

n!
,
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which converges for x ∈ B(0,
1

2
) if p = 2 and x ∈ B(0, 1) if p 6= 2. For simplicity of notation, we write exp(x) instead

of expp(x).
Put

Ep =
{
x ∈ Qp :| x− 1 |p< p−1/(p−1)

}
.

A more thorough explanation of p-adic calculus and p-adic mathematical physics is provided in [36, 37].

Let (X,B) be a measurable space, where B is an algebra of subsets X . A function µ : B → Qp is said to be a p-adic

measure if for any A1, A2, ..., An ∈ B such that

Ai ∩Aj = ∅, i 6= j, the following holds:

µ




n⋃

j=1

Aj


 =

n∑

j=1

µ(Aj).

If µ(X) = 1, then a p-adic measure is called probability. One of the important conditions is boundedness, namely, a

p-adic measure µ is called bounded if sup{| µ(A)|p : A ∈ B} < ∞. For more detail information about p-adic measures

we refer to [36, 38].

1.2. Cayley Tree

Let Γk
+ = (V, L) be a semi-infinite Cayley tree [39] of order k ≥ 1 with the root x0 ∈ V . Here V is the set of vertices

and L is the set of edges. The vertices x and y are referred to as nearest neighbors when there is an edge l connecting

them and this is shown by the notation l = 〈x, y〉. Note that each vertex of Γk
+ has exactly k+1 nearest neighbors, except

for the root x0, which has k nearest neighbors. A collection of the pairs 〈x, x1〉, . . . , 〈xd−1, y〉 is called a path from the

point x to the point y. The distance d(x, y) on the Cayley tree is the length (number of edges) of the shortest path from x

to y.

Let us set

Wn = {x ∈ V : d(x, x0) = n}, Vn =

n⋃

m=0

Wm,

Ln = {〈x, y〉 ∈ L : x, y ∈ Vn}.

We introduce a coordinate structure in Γk
+: every vertex x (except for x0) of Γk

+ has coordinates (i1, . . . , in), here

im ∈ {1, . . . , k}, 1 ≤ m ≤ n and for the vertex x0 we put (0). Namely, the symbol (0) constitutes level 0, and the sites

(i1, . . . , in) form level n (i.e. d(x0, x) = n) of the lattice. Let us define on Γk
+ binary operation ◦ : Γk

+ × Γk
+ → Γk

+ as

follows: for any two elements x = (i1, . . . , in) and y = (j1, . . . , jm) put

x ◦ y = (i1, . . . , in) ◦ (j1, . . . , jm) = (i1, . . . , in, j1, . . . , jm) (2)

and

x ◦ x0 = x0 ◦ x = (i1, . . . , in) ◦ (0) = (i1, . . . , in). (3)

By means of the defined operation Γk
+ becomes a noncommutative semigroup with a unit. Let us denote this group

(Gk, ◦). Using this semigroup structure one defines translations τg : Gk → Gk, g ∈ Gk by

τg(x) = g ◦ x.

It is clear that τ(0) = id.

Let G ⊂ Gk be a sub-semigroup of Gk and h : Gk → Y be a Y -valued function defined on Gk. We say that h is G-

periodic if h(τg(x)) = h(x) for all g ∈ G and x ∈ Gk. We say that any Gk-periodic function is translation-invariant.

Now, for each m ≥ 2 we put

Gm = {x ∈ Gk : d(x, x0) ≡ 0(modm)}. (4)

It is easy to verify that Gk is a sub-semigroup of Gm.

2. p-adic quasi Gibbs measure for the Potts model

Let Qp be the field of p-adic numbers and Φ = {1, 2, ..., q} be a finite set. A configuration σ on V is defined as

x ∈ V 7→ σ(x) ∈ Φ. The set of all configurations coincides with the set Ω = ΦV For given configurations σ ∈ ΩVn−1

and ω ∈ ΩWn
, we define their concatenation by

(σn−1 ∨ ω)(x) =

{
σn−1(x), if x ∈ Vn−1,

ω(x), if x ∈ Wn.

It is clear that σ ∨ ω ∈ ΩVn
.

We consider p-adic q-state Potts model on a Cayley tree with an external field.
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The (formal) Hamiltonian of p-adic Potts model is

H(σ) = J
∑

〈x, y〉∈L

δσ(x)σ(y) + α
∑

x∈V

δqσ(x), (5)

where J, α ∈ B(0, p−1/(p−1)) are constant, 〈x, y〉 stands for nearest neighbor vertices and δij is the Kronecker symbol,

i.e.,

δij =

{
0, if i 6= j,

1, if i = j.

Assume that h : V → Q|Φ|
p is a mapping, i.e. hx = (h1,x, h2,x, ..., hq,x), where hi,x ∈ Qp (i ∈ Φ) and x ∈ V . Given

n ∈ N, we consider a p-adic probability measure µ
(n)
h,σ on ΩVn

defined by

µ
(n)
h (σ) =

1

Z
(h)
n

exp{Hn(σ)}
∏

x∈Wn

hσ(x),x, (6)

Here, σ ∈ ΩVn
, and Z(h)

n is the corresponding normalizing factor or a partition function given by

Z(h)
n =

∑

σ∈ΩVn

exp{Hn(σ)}
∏

x∈Wn

hσ(x),x. (7)

We say that p-adic probability distributions (6) are compatible if for all n ≥ 1 and σn−1 ∈ ΦVn−1 :
∑

ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) = µ

(n−1)
h (σn−1) (8)

We notice that a non-Archimedean analogue of the Kolmogorov extension theorem was proved in [40, 41]. According to

this theorem, there exists a unique p-adic quasi measure µh on Ω = ΦV such that for all n ≥ 1 and σ ∈ ΦVn ,

µ(σ ∈ Ω : σ|Vn
≡ σn) = µ

(n)
h (σn)

Such measure is called a p-adic quasi Gibbs measure corresponding to the Hamiltonian (5) and vector-valued function

hx, x ∈ V. By QG(H) we denote the set of all p-adic quasi Gibbs measure associated with function h = {hx, x ∈ V }.

If all coordinates of hx belong to the set Ep then it is called p-adic Gibbs measure. If there are at least two distinct p-adic

quasi Gibbs measure µ, ν ∈ QG(H) such that µ is bounded and ν is unbounded, then we say that a phase transition

occurs.

The following statement describe conditions hx providing compatibility of µ
(n)
h (σ).

Theorem 1. The measures µ
(n)
h (σ), n = 1, 2, ... (6) associated with the Potts model (5) satisfy the compatibility

condition (8) if and only if for any n ∈ N the equation that follows holds:

ĥx =
∏

y∈S(x)

F (ĥy, θ, η), (9)

here θ = exp {J}, η = exp{α} and below a vector ĥx =
(
ĥ1,x, ĥ2,x, ..., ĥq−1,x

)
∈ Qq−1

p is defined by a vector

hx = (h1,x, h2,x, ..., hq,x) ∈ Qq
p as follows

ĥi,x =
hi,x

hq,x
, i = 1, 2, ..., q − 1

and mapping

F : Qq−1
p → Qq−1

p is defined by F (x; θ, η) = (F1(x; θ, η), ..., Fq−1(x; θ, η)) with

Fi(x; θ, η) =

(θ − 1)xi +
q−1∑
j=1

xj + η

q−1∑
j=1

xj + θη

, x = {xi} ∈ Qq−1
p , i = 1, 2, ..., q − 1.

Proof Necessity. Assume that (8) holds. We must demonstrate (9). Substituting (6) into (8), we have

∑

ω∈ΦWn

1

Z
(h)
n

exp

{
Hn−1(σ) +


 ∑

x∈Wn−1

∑

y∈S(x)

(Jδσn−1(x)ωn(y) + αδqωn(y))



}
∏

x∈Wn

hσ(x),x

=
1

Z
(h)
n−1

exp{Hn−1(σ)}
∏

x∈Wn−1

hσ(x),x.



168 M. M. Rahmatullaev, N. D. Samijonova

By eliminating the expressions on the left side of the equality outside the sign of the sum that do not depend on the sum,

we obtain the following equality:

Zn−1

Zn

∑

ω∈ΦWn

exp


 ∑

x∈Wn−1

∑

y∈S(x)

(Jδσn−1(x)ωn(y) + αδqωn(y))


 ∏

x∈Wn

hωn(x),x

=
∏

x∈Wn−1

hσn−1(x),x.

It yields that

Zn−1

Zn

∑

ω∈ΦWn

∏

x∈Wn−1

∏

y∈S(x)

exp (Jδσn−1(x)ωn(y) + αδqωn(y))hωn(y),y =
∏

x∈Wn−1

hσn−1(x),x. (10)

Fix x ∈ Wn−1 and consider two configurations σn−1 = σn−1 and σn−1 = σ̃n−1 on Wn−1 which coincide on Wn−1\{x},

and the equality (10) for σn−1 is divided by (10) for σ̃n−1. Then we obtain

∏

y∈S(x)

∑
j∈Φ

exp (Jδij + αδqj)hj,y

∑
j∈Φ

exp (Jδqj + αδqj)hj,y
=

hi,x

hq,x
.

It follows that

∏

y∈S(x)

q−1∑
j=1

ĥj,y + (θ − 1)ĥi,y + η

q−1∑
j=1

ĥj,y + θη

= ĥi,x,

where ĥi,x =
hi,x

hq,x
which implies (9).

Sufficiency. Suppose that (9) holds. It yields

∏

y∈S(x)

∑
j∈Φ

exp (Jδij + αδqj)hj,y

∑
j∈Φ

exp (Jδqj + αδqj)hj,y
=

hi,x

hq,x
,

then for some function a(x) ∈ Qp, x ∈ V , we have
∏

y∈S(x)

∑

j∈Φ

exp (Jδij + αδqj)hj,y = a(x) exp (hi,x), i ∈ Φ. (11)

We rewrite (6) as

∑

ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) =

1

Zn
exp {H(σn−1)}

∏

x∈Wn−1

∏

y∈S(x)

∑

j∈Φ

exp (Jδσn−1(x)j + αδqj)hj,y. (12)

Substituting (11) into (12) and denoting An−1 =
∏

x∈Wn−1

a(x), we obtain

∑

ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) =

An−1

Zn
exp {H(σn−1)}

∏

x∈Wn−1

hσn−1(x),x. (13)

Since µ(n) is a probability measure, we have
∑

σ∈ΩV(n−1)

∑

ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) = 1.

(13) yields
∑

ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) =

An−1

Zn
µ
(n−1)
h (σn−1)Zn−1 (14)

or

1 =
∑

σ∈ΩV(n−1)

∑

ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) =

An−1

Zn
Zn−1

∑

σ∈ΩV(n−1)

µ
(n−1)
h (σn−1) =

An−1

Zn
Zn−1.

It follows that

Zn = An−1Zn−1. (15)
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Substituting (15) into (14), we have
∑

ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) = µ

(n−1)
h (σn−1).

Theorem was proven.

Remark 1. If η = 1, then Theorem 1 coincides with Theorem 3.1 in [39].

3. Translation-invariant p-adic quasi Gibbs measure for the Potts model with external field

We try to find the translation-invariant solutions of the system of equations (9). It requires to solve the following

system of equations

ĥi =




(θ − 1)ĥi +
q−1∑
j=1

ĥj + η

q−1∑
j=1

ĥj + θη




k

, i = 1, 2, ..., q − 1. (16)

We assume that ĥ :≡ ĥ1 = ĥ2 = ... = ĥq−1. Then equation (16) reduces to the following one

ĥ =

(
(θ + q − 2)ĥ+ η

(q − 1)ĥ+ θη

)k

. (17)

Lemma 3. For equation (17), the following statements hold:

1) Equation (17) has no solution on pZp;

2) If q 6∈ Ep then the solutions of (17) belong to Z∗
p.

Proof At first, we show that equation (17) has no solution on pZp. Assume that ĥ ∈ pZp, i.e. | ĥ |p< 1. Since

η, θ ∈ Ep and q ∈ Zp, we obtain

| ĥ |p=

∣∣∣∣∣∣

(
(θ + q − 2)ĥ+ η

(q − 1)ĥ+ θη

)k
∣∣∣∣∣∣
p

=

∣∣∣∣
η

θη

∣∣∣∣
k

p

= 1.

However, it contradicts to our assumption. Therefore, equation (17) has no solution on pZp.

Now, we proof the second part of the theorem. We assume that q 6∈ Ep, | ĥ |p> 1. From (17), we have
∣∣∣∣∣∣

(
(θ + q − 2)ĥ+ η

(q − 1)ĥ+ θη

)k
∣∣∣∣∣∣
p

=

∣∣∣∣∣∣

(
(θ − 1 + q − 1)ĥ

(q − 1)ĥ

)k
∣∣∣∣∣∣
p

= 1 6=| ĥ |p .

However, it contradicts to our assumption. Thus, equation (17) has no solution on pZp, if q 6∈ Ep, (17) has no solution on

Qp \ Zp. To conclude, if equation (17) has a solution, it must belong to Z∗
p. Lemma was proven.

Lemma 4. Let |q|p = 1, p ≥ 3. Then there is a unique solution of (17) in the form of h∗ ∈ Ep.
Proof We rewrite (17) as

ĥ((q − 1)ĥ+ θη)k − ((θ + q − 2)ĥ+ η)k = 0

Set the notation

F (ĥ, θ, η, q) = ĥ((q − 1)ĥ+ θη)k − ((θ + q − 2)ĥ+ η)k.

It can be seen that F (ĥ, θ, η, q) is a polynomial with p-adic integer coefficients. For h ≡ 1(mod p), we verify that

F (ĥ, θ, η, q) satisfies the conditions of Lemma 2. Then we obtain that

F (1, θ, η, q) ≡ ((q − 1 + 1 + o[1])k − (q − 1 + o[1] + 1 + o[1])k)

≡ ((q + o[1])k − (q + o[1])k) ≡ 0(mod p)

and

F ′(h, θ, η, q) = ((q − 1)ĥ+ θη)k + k(q − 1)h((q − 1)ĥ+ θη)k−1 − k(θ + q − 2)((θ + q − 2)ĥ+ η)k−1.

We consider F ′(1, θ, η, q) ≡ 0(mod p), i.e.,

F ′(1, θ, η, q) ≡ (q−1+1+o[1])k+k(q−1)(q−1+1+o[1])k−1−k(1+o[1]+q−2)(1+o[1]+q−2+1+o[1])k−1 ≡
(q + o[1])k 6≡ 0(mod p).
Thus, the polynomial fulfills the requirements of Lemma 2. It implies that there is a unique integer root h∗ such that

F (h∗, θ, η, q) = 0, h∗ ≡ 1(mod p).

It yields h∗ ∈ Ep.
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Remark 2. In [22] authors studied all translation-invariant p-adic Gibbs measures for the Potts model without external

fields. It was shown that if | q |p= 1, η = 1 then the system of equations (16) on Ep \ {1} does not have any solution.

However, we proved that if | q |p= 1, η 6= 1 then the system of equations (16) has a unique solution on Ep \ {1}.

Remark 3. Further calculations are needed in order to study equation (17) for the case q ∈ Ep. Hence, this problem

will be studied in our upcoming work.

From Lemma 3, if q 6∈ Ep, the solutions of equation (17) belonging to Z∗
p. We obtain the following congruence from

(17) after slight modification:

ĥ((q − 1)ĥ+ θη)k − ((θ + q − 2)ĥ+ η)k ≡ 0(mod p). (18)

Theorem 2. For congruence (18), the following statements hold:

i) If | q |p< 1 then (18) has a solution with ĥ ≡ 1(mod p);

ii) If q ∈ Z∗
p \ Ep then (18) has the solutions with ĥ(1) ≡ 1(mod p) and h(2) ≡ −(q − 1)−1(mod p),

here (q − 1)−1 is inverse of q − 1 modulo p.

Proof Let | q |p< 1. Then it can be seen that

ĥ((q − 1)ĥ+ θη)k − ((θ + q − 2)ĥ+ η)k ≡ (−1)k(ĥ− 1)k+1(mod p).

It follows that the solution of the congruence (17) is ĥ1 ≡ 1(mod p).

Let | q |p= 1 and q 6∈ Ep. Then we get

ĥ((q − 1)ĥ+ θη)k − ((θ + q − 2)ĥ+ η)k ≡ (ĥ− 1)((q − 1)ĥ+ 1)k(mod p).

From this, we have two solutions ĥ1 ≡ 1(mod p) and ĥ2 ≡ −(q − 1)−1(mod p) which implies (17).

Remark 5. We note that it is essential to find the first coefficient of the canonical form of the solution of (17). It gives

a possibility to check the boundedness of the Gibbs measure.

If q ∈ Z∗ then according to Lemma 4, equation (17) has a unique solution in Ep. Now, we show that there is a solution

of (16) such that h 6∈ Ep. It is difficult to solve this problem in general case. We concentrate on the simplest case k = 2.

In this case, we have

ĥ =

(
(θ + q − 2)ĥ+ η

(q − 1)ĥ+ θη

)2

. (19)

Let us consider the following depressed cubic equation

x3 + ax = b.

In [42], the criteria for solvability of the depressed cubic equation over Z∗
p are given.

Let D = −4(a | a |p)
3 − 27(b | b |p)

2 6= 0, D =
D∗

| D |p
, D∗ ∈ Z∗

p, D∗ = d0 + d1p + ... , D0 = −4a30 − 27b20 and

u1 = 0, u2 = −a0, u3 = b0 and un+3 = b0un − a0un+1.
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Theorem 3. [42] Let p > 3 be a prime number and N be the cardinality of the set of solution to x3 + ax− b = 0 in

Zp. Then the following statements hold:

N =





3, | a |3p<| b |2p≤ 1, 3 | logp | b |p p ≡ 1(mod 3), b
p−1
3

0 ≡ 1(mod p);

3, | a |3p=| b |2p≤ 1, D = 0;

3, | a |3p=| b |2p≤ 1, 0 <| D |p< 1, 2 | logp | D |p, d
p−1
2

0 ≡ 1(mod p);

3, | a |3p=| b |2p≤ 1, | D |p= 1 and up−2 ≡ 0(mod p);

3, | b |2p<| a |3p≤ 1, , 2 | logp | a |p , (−a0)
p−1
2 ≡ 1(mod p);

1, | a |3p<| b |2p≤ 1 3 | logp | b |p , p ≡ 2(mod 3);

1, | a |3p=| b |2p≤ 1, 0 <| D |p< 1, 2 | logp | D |p, d
p−1
2

0 6≡ 1(mod p);

1, | a |3p=| b |2p≤ 1, 0 <| D |p< 1, 2 - logp | D |p;

1, | a |3p=| b |2p≤ 1, D0u
2
p−2 6≡ 0(modp), D0u

2
p−2 6≡ 9a20(mod p);

1, | b |2p<| a |3p≤ 1, 2 | logp | a |p , (−a0)
p−1
2 6≡ 1(mod p);

1, | b |2p<| a |3p≤ 1, 2 - logp | a |p;

1, | b |2p<| a |3p , | b |p≤| a |p, | a |p> 1;

0, otherwise,

where a | b means a divides b.

Lemma 5. Let p > 3, q ∈ Z∗
p \ Ep, N be the cardinality of the set of the solutions of (19). Then we have

N =





3, if (1− q)
p−1
2 ≡ 1(mod p);

1, otherwise.

Proof We rewrite equation (17) as follows

ĥ3 +
2θη(q − 1)− (θ + q − 2)2

(q − 1)2
ĥ2 +

(θ2η2 − 2η(θ + q − 2))

(q − 1)2
ĥ−

η2

(q − 1)2
= 0. (20)

We denote

z := ĥ−
2θη(q − 1)− (θ + q − 2)2

3(q − 1)2
. (21)

From (20) and (21), we obtain

z3 + az − b = 0, (22)

where

a = −
1

3

(2θη(q − 1)− (θ + q − 2)2)2

(q − 1)4
+

θ2η2 − 2η(θ + q − 2)

(q − 1)2
,

b =
1

3

(θ2η2 − 2η(θ + q − 2))(2θη(q − 1)− (θ + q − 2)2)

(q − 1)4
+

η2

(q − 1)2
− (23)

2

27

(2θη(q − 1)− (θ + q − 2)2)3

(q − 1)6
.

It should be noted that due to Lemma 4, equation (17) has a unique solution ĥ∗ ≡ 1(mod p) and this statement also

holds for (19). Therefore, we check the conditions of Theorem 3 for N = 3. Since q 6∈ Ep, | q |p= 1, we obtain that

| a |p=| b |p= 1.

One can see that

D = −4(a | a |p)
3 − 27(b | b |p)

2 =
1

(q − 1)8
m2(s+ 1)3(m+ q)2(−4m3qs2 +m4s− 6m3qs+ 4m3s2 +m2q2s−

12m2qs2 +m4 − 2m3q + 8m3s+m2q2 − 4m2qs+ 12m2s2 + 20mq2s− 12mqs2 − 4m2q + 4m2s+

8mq2 − 44mqs+ 12ms2 − 8q2s− 4qs2 + 4m2 − 8mq + 24ms+ 4q2 + 8qs+ 4s2 + 4q2 − 4q3),

where m = θ − 1, s = η − 1.

It can be checked that | D |p< 1. According to Theorem 3, if 2 | logp | D |p, d
p−1
2

0 ≡ 1(mod p), then equation (22) has
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three solutions. We show that ordp D is even,
√

d0 ∈ Qp.

At first, we check that
√
d0 ∈ Qp. For the sake of simplicity, we denote

D1 = −4m3qs2 +m4s− 6m3qs+ 4m3s2 +m2q2s− 12m2qs2 +m4 − 2m3q + 8m3s+m2q2−

4m2qs+ 12m2s2 + 20mq2s− 12mqs2 − 4m2q + 4m2s+ 8mq2 − 44mqs+ 12ms2 − 8q2s−

4qs2 + 4m2 − 8mq + 24ms+ 8qs+ 4s2 + 4q2 − 4q3,

q = q0 + o[1], q0 ∈ 2, p− 1, m = pβ(m0 + o[1]).

Using | m |p< 1, | s |p< 1, | q |p= 1 and q 6∈ Ep, we obtain

q − 1 = q0 − 1 + o[1];

s+ 1 = 1 + o[1];

m+ q = q0 + o[1];

D1 = 4q20(1− q0) + o[1].

(24)

It yields that d0 ≡
4q40(1− q0)m

2
0

(q0 − 1)8
(mod p).

We deduce that if the Legendre symbol of 1− q0 is equal to 1, then
√
d0 ∈ Qp.

Now, we define | D |p Using (24), we have

| q − 1 |p= 1;

| s+ 1 |p= 1;

| m+ q |p= 1;

| D1 |p= 1.

It follows that | D |p= (| m |p)
2. So, ordp D is even. The proof is completed.

In [43], the cubic equation (22) is examined for the case p = 3. If | a |3p>| b |2p, 2 | log3 | a |3,
a

| a |3
≡ 2(mod 3),

then equation (22) has three solutions over Q3. Using this criteria, we get the following lemma.

Lemma 6. Let p = 3, |q|3 = 1, then equation (19) has a unique solution.

Proof We note that, due to Lemma 4, equation (19) has a unique solution on E3. For this case, let us find the remaining

solutions of (19).

Case I. q ≡ 2(mod 3).
From (23), we get | a |3= 3, | b |3= 27. This does not satisfy the conditions of the above criteria.

Case II. q ≡ 1(mod 3)
Let |2θη(q − 1)− (θ + q − 2)2|3 = 3α, |q − 1|3 = 3m. Then | a |3= 34m−2α+1, | b |3= 36m−3α+3. This also does not

meet the required conditions. Therefore, we conclude that equation (19) has a unique solution.

Lemma 7. Let p ≥ 3, | q |p< 1, then equation (19) has no solution.

Proof We assume that | q |p< 1. According to Lemma 3 and Theorem 3, the solutions of equation (19) belong to Z∗
p

with ĥ ≡ 1(mod p). Due to (21), we obtain that

2θη(q − 1)− (θ + q − 2)2

3(q − 1)2
= −1 + o[1], z ≡ 2(mod p).

It follows that | z |p= 1.

Using (23) and | q |p< 1, we have | a |p< 1, | b |p< 1. We rewrite equation (22) as follows

z3 = b− az.

It can be seen that

| b− az |p< 1 6=| z3 |p .

It follows that equation(19) has no solution given the conditions in the lemma. Lemma was proved.

Using Lemmas 5,6, and 7, we come to the following result:

Theorem 4. The following statements are true for p−adic Potts model with external field on the Cayley tree of order

two.

1) if | q |p= 1, p = 3 or | q |p= 1, p > 3, (1 − q)
p−1
2 6≡ 1(mod p) then there is one translation-invariant p-adic

quasi Gibbs measure;
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2) if p > 3, | q |p= 1, q 6∈ Ep, (1− q)
p−1
2 ≡ 1(mod p), then there are three translation-invariant p-adic quasi Gibbs

measures;

3) if p ≥ 3, | q |p< 1, then there is not any translation-invariant p-adic quasi Gibbs measure.

Corollary 1. Let NTP be number of p-adic quasi Gibbs measures for the Potts model with an external field on the

Cayley tree of order two. Then we obtain

NTP =





0, if p = q = 3;

1, if q = 3, p > 3, p ≡ 5(mod 8) or p ≡ 7(mod 8);

3, if q = 3, p > 3, p ≡ 1(mod 8) or p ≡ 3(mod 8).

Proof 1) Let p = q = 3. This case satisfies the third condition in Theorem 4, therefore, there is no translation-

invariant p-adic quasi Gibbs measure, that is, NTP = 0.

2) If q = 3, p > 3, then 1− q = −2. In [44], the following results are obtained

(
−2

p

)
=





1, if p ≡ 1(mod 8) or p ≡ 3(mod 8);

−1, if p ≡ 5(mod 8) or p ≡ 7(mod 8).

These conditions satisfy the first and the second conditions in Theorem 4. Keeping in mind these results, we obtain the

assertions of the corollary.

4. Boundedness of the translation-invariant p-adic quasi Gibbs measures and phase transitions

Lemma 8. Let µh be an associated p-adic quasi Gibbs measure, and let h be a solution of (9). Then, the following

equality is true for the appropriate partition function Z(h)
n :

Z(h)
n = Ah,n−1Z

(h)
n−1, (25)

where Ah,n =
∏

x∈Wn

ah(x),
∏

y∈S(x)

q∑

j=1

exp{Jδi,j + αδqj}hj,y = ah(x)hi,x,

ah(x) ∈ Qp, i = 1, 2, ..., q.

Proof Assume that h is a solution of (9), then equation (10) hold. We rewrite (10) for ordinary i ∈ Φ as follows

Zn = Zn−1

∏

x∈Wn−1

∏
y∈S(x)

q∑
j=1

exp(Jδij + αδqj)hj,y

hi,x
. (26)

We present subsequent notations

Ah,n =
∏

x∈Wn

ah(x) and ah(x) =

∏
y∈S(x)

q∑
j=1

exp{Jδi,j + αδqj}hj,y

hi,x
.

Then equation (26) is reduced to (25).

Using Lemma 8, we come to the following statement.

Lemma 9. Let k = 2, h be a translation-invariant solution of (9), then for the corresponding partition function Z(h)
n

the following equality is appropriate:

Z(h)
n = ((q − 1)h+ ηθ)3·2

n−1(h(q − 1) + η). (27)

Proof It is easy to check that h = (h, h, ..., h, 1) is a translation-invariant solution of (9), where h is a fixed point of

(19). Since θ = exp{J} and η = exp{α}, using (7) we obtain Z
(h)
1 = ((q− 1)h+ θη)2((q− 1)h+ η). Then by Lemma

8, we come to the following equality:

ah(x) =
((θ + q − 2)h1,y + η)2

h1,x
=

(θ + q − 2)h+ η)2

h
= ((q − 1)h+ θη)2.

From Lemma 8, we obtain

Ah,n = ((q − 1)h+ ηθ)3·2
n−1

,

Z(h)
n = ((q − 1)h+ ηθ)3·(2

n−1)((q − 1)h+ ηθ)2((q − 1)h+ η) =

= ((q − 1)h+ ηθ)3·2
n−1(h(q − 1) + η).

Lemma is proved.
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Theorem 5. Let p ≥ 3, |q|p = 1. The following statements hold for p-adic Potts model with an external field on a

Cayley tree of order two:

1) if p = 3 or p > 3, (1− q)
p−1
2 6≡ 1(mod p), then measure µh∗ is bounded;

2) if q 6∈ Ep, p > 3, (1− q)
p−1
2 ≡ 1(mod p), then measure µh∗ is bounded, measures µh1 , µh2 are unbounded.

Proof Case 1. If p = 3 or p > 3, (1 − q)
p−1
2 6≡ 1(mod p), then there exists measure µh∗ . We note that h∗ ∈ Ep.

From Lemma 9 and (6), we obtain

lim
n→∞

| µ
(n)
h∗ |p = lim

n→∞
|

1

(q + o[1])
3·2n exp{Hn(σ)}

∏

x∈Wn

hσ(x),x |p = 1.

Case 2. If p > 3, (1− q)
p−1
2 ≡ 1(mod p), there exist translation-invariant measures µh∗ , µh1 , µh2 . According to Lemma

4 and Theorem 3, h∗ = 1(mod p), h1,2 = −(q − 1)−1(mod p). From Lemma 9 and (6), we obtain

lim
n→∞

| µ
(n)
h∗ |p = lim

n→∞
|

∏
x∈Wn

hσ(x),x

((q − 1)h∗ + ηθ)3·2n−1(h∗(q − 1) + η)
exp{Hn(σ)} |p = 1.

lim
n→∞

| µ
(n)
h1,2

|p = lim
n→∞

|

∏
x∈Wn

hσ(x),x

((q − 1)h1,2 + ηθ)3·2n−1(h1,2(q − 1) + η)
exp{Hn(σ)} |p = ∞.

We have proved that the measure µh∗ is bounded, µh1 , µh2 measures are unbounded as in the case 2.

Theorem 6. Let p > 3, | q |p= 1, q 6∈ Ep. Then there exists a phase transition for p-adic q-state Potts model with an

external field on a Cayley tree of order two if (1− q)
p−1
2 ≡ 1(mod p).

Proof The proof is straightforward due to Theorem 5.

Corollary 2. Let q = 3. If p > 3, p ≡ 1(mod 8) or p ≡ 3(mod 8) then there is a phase transition for p-adic Potts

model with an external field on the Cayley tree of order two.

Remark 6. a) In [23], the authors focused on the Potts model without an external field. The phase transition conditions

determined in this study were consistent with the results of Corollary 2.

b) In [24], the existence a quasi-phase transition is defined for the q+1 Potts model without an external field is proven

if | q |p= 1. However, we define a phase transition for this model if | q |p= 1, | q− 1 |p= 1, and (1− q)
p−1
2 ≡ 1(mod p).

c) Note that we have considered translation-invariant p-adic quasi Gibbs measures for the Potts model with an external

field only for the case h = {h, h, ..., h}, h ∈ Qq−1
p . The remaining cases are left as an open problem.

5. Conclusion

It should be noted that so far, p-adic quasi-Gibbs measures have been obtained for the Potts model without an external

field. Therefore, we have dedicated this work to the study of p-adic quasi-Gibbs measures for the Potts model with an

external field. Analyzing functional equation which defines p-adic quasi Gibbs measure for the Potts model with the

external field on a semi-infinite Cayley tree, we have derived three translation-invariant p-adic quasi Gibbs measures

under some condition. We also obtained a system of functional equations that satisfy the consistency condition for p-

adic quasi-Gibbs measures for the Potts model with an external field on the Cayley tree of order k ≥ 2. This system

corresponds to the functional equation in [39] when the external field is zero.

In [24], a quasi-phase transition was identified for the q + 1 state Potts model when | q |p= 1. Moreover, we

identified the phase transition for the q-state Potts model with an external field when | q |p= 1, | q − 1 |p= 1, and

(1− q)
p−1
2 ≡ 1(mod p).

In [28], [23], p-adic quasi-Gibbs measures were determined for the 3-state Potts model, and we extend these results

to the general case q ≥ 3 and zero external field. In particular, if q = 3, our result coincides with the result in [23].
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ABSTRACT In this work, we investigate the effect of quantum coupling between radio fields in a single-atom

maser with two spatially separated resonators. Each atom in a beam, depending on its state, can emit one

photon into the first resonator and absorb another from the second, thereby entangling the quantum states of

two independent modes. Resulting from entanglement, we obtain a coherence between states of two-mode

field with the same total number of photons in the both modes. To study the arising coupling, an analytical

solution of the stationary master equation is found under conditions of a trapped field state and the dependence

of the von Neumann entanglement entropy on the quality factor of the resonators. Numerical analysis reveals

that the best conditions for the appearance of quantum coupling are the low quality factor of the first resonator

and the high quality factor of the second one.
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1. Introduction

A single-atom maser is widely accepted as one of the most efficient tools for observing the quantum effects of

the atom-field interaction [1, 2]. An example of its application is the verification of the Jaynes-Cummings model [3].

Multiple publications containing a lot of experimental and theoretical work have also been published [4–14]. The most

important research on the development of a single-atom masers was carried out by G. Walter at the end of the previous

century. Thereby, the quantum properties of a single-atom masers with one resonator has already been described [15,16].

Despite its success, the technical implementation of such a quantum single-atom maser circuit has proven to be a rather

difficult and complex task. Therefore, further research continued only after the appearance of alternative schemes of

controlled interaction between selected mode and atom. More recent research, most notably, includes the observation

and prediction of new effects using a nanomaser on an ultra-fast driving LC circuit [17–20] as well as experiments on

the study of interaction effects between single atoms and a series of coupled resonators [21–23]. Furthermore, active

development is underway in the theory of single-atom masers [24]. However, in fact, we have not found any work on the

formation of quantum connection between several independent modes using a common pumping system in a single-atom

maser. Therefore, in this work, we build the initial theoretical foundation for this phenomenon with the ultimate goal of

obtaining new physical results in subsequent studies.

Our article describes the initial theory of a single-atom masers that contains two resonators located in the path of

the atomic beam, as shown in Fig. 1. With the use of focused pumping light, beam atoms are excited into a mixed

populational state of lower and upper levels. Then the prepared atoms fly through a pair of resonators. The atomic beam

is considered to be quite sparse, so that only one atom can possibly be located inside a pair of resonators at the same

moment of time. During the propagation through each resonator, the atom periodically moves from one level to another,

either emitting a photon into the mode or absorbing it. After the atom leaves the second resonator, the quantum state of

the atom is destroyed due to the interaction with the environment. The atomic field wave function experiences collapse:

the two-mode field will turn into a statistical ensemble of those states that correspond to the atom that was flew out at the

lower or upper level. The process repeats for each atom in the beam.

Based on the described physical model, we propose a theoretical description for the formation of quantum coupling

between the modes of spatially separated resonators. This coupling is explained by the preservation of the quantum state

of the atom during its flight between the first and second resonators. During the interaction, the information about the field

of the first resonator is recorded into a superposition of quantum states and then transferred to the second resonator by

the atom. The information transfer process looks like this: an atom absorbs a photon from the first resonator and emits it
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FIG. 1. The scheme of a single-atom maser with double resonator. Red and white spheres are atoms emitted from

the source of the atomic beam. There is a scheme of atomic levels on right.

into the second, or vice versa; as a result, coherence is formed between field states with the same total number of photons

in both modes. Strictly speaking, our task is to find an analytical form of the stationary state field modes under atomic

pumping. The analysis of coupling between two cavities containing bosons is important in many theoretical and applied

problems, so this observation may be useful in other studies [25–28].

2. Evolution of two-mode field

To model a single-atom maser with two resonators, we use the density matrix ρF , which describes the state of two

coupled field modes. Each mode belongs to its own resonator. The first resonator, an atom flies through which, will be

denoted as a, and the second as b:

ρF (t) =
∑

m,nµ,ν

Fm,n|µ,ν |m,n〉 〈µ, ν| , m, n, µ, ν ∈ N0; (1)

|m,n〉 = |m〉a ⊗ |n〉b , 〈µ, ν| = 〈µ|a ⊗ 〈ν|b . (2)

Here |k〉α is the Fock-state of the resonator mode α with occupation number k, and Fm,n|µ,ν are elements of a field

density matrix.

In our case, the beam atoms inside the resonator can be in two orthogonal energy states: lower |d〉 with energy Ed,

and upper |u〉 with energy Eu. These two states collectively constitute a two-dimensional subspace C2, within which all

atomic transformations are described by the algebra of the following operators:

σz = |u〉〈u| − |d〉〈d| , σ+ = |u〉 〈d| , σ− = |d〉〈u| . (3)

When an atom in the beam propagates through one of the resonators with index α ∈ a, b, then in accordance with the

Jaynes-Cummings model, the evolution of such an atomic field system is described using the von Neumann equations in

the rotating wave approximation [29]:

dρAF

dt
= i [Vα, ρAF ] , (4)

Vα =

(

ωα

2
− Eu − Ed

2~

)

· σz + gα
(

α†σ− + ασ+

)

, (5)

where Vα is the interaction operator; density matrix ρAF is represented in the basis of atomic-field’s states; α+ and α

are the operators of photon creation and annihilation inside the cavity mode α; ωα is the frequency of the mode of the

resonator α; real coefficient gα characterizes the coupling between the mode and the passing atom.

The solution of equation (3) can be written using the operator exponent, since the interaction operators Vα corre-

sponding to different moments of time commute:

ρAF (t
′

) = e−iVα(t′−t)ρAF (t)e
iVα(t′−t). (6)

Thus, evolution of the atom-field density matrix when an atom passes through a pair of resonators can be written as

ρ′AF = Uρ
(0)
AFU

†, U = e−iVbTb · e−iVaTa . (7)

where ρ
(0)
AF is the atom-field density matrix at the moment the atom enter the resonator α; ρ′AF is the density matrix at

the moment the atom leaves the resonator b; Tα is the time of propagation of an atom through the resonator α. Before the

interaction begins, the atom of beam and the field are independent, so we can write:

ρ
(0)
AF = ρA ⊗ ρF (0), (8)
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where ρA is the mixed state of the atom after pumping, and ρF (0) is the state of the field before the start of interaction

with the atom.

For simplicity, we will assume that the frequency of the atomic transition coincides with the frequencies of the modes

of both resonators: ~ωα = ~ωb = Eu − Ed. Then the evolution operator U in equation (6) can be represented in the

following form:

U =
∑

f,i

Ufi |f〉〈i| , f, i ∈ d, u; (9)

Udd = Ca ⊗ Cb − Sa ⊗ S′
b, Uuu = C ′

a ⊗ C ′
b − S′

a ⊗ Sb, (10)

Udu = −i (S′
a ⊗ Cb + C ′

a ⊗ S′
b) , Uud = −i (Sa ⊗ C ′

b + Ca ⊗ Sb) . (11)

The second term in equations (9) corresponds to the re-emission of a photon from one resonator to another through

the passing atom. Operators Cα, C
′

α, Sα, and S
′

α act in the subspace of mode states resonator α. Using the notation

θαk = gαTα

√
k, one can present their explicit forms:

Cα |k〉α = cos θαk |k〉α , Sα |k〉α = sin θαk+1 |k − 1〉α , (12)

C ′
α |k〉α = cos θαk+1 |k〉α , S′

α |k〉α = sin θαk+1 |k + 1〉α . (13)

We consider the case when the time of propagation of an atom through the resonators is short enough to neglect the

relaxation processes for both the atom and the field. The relaxation and its effects will be taken into account later in the

master equation, which describes the dynamics of the field over a long time interval, during which much more than one

atom passes through the resonators.

3. Master equation

The dynamics of the micromaser field over a long time interval is described by the master equation [2, 9, 17]. We

modify it for the case of a two-mode resonator, leaving the structure of the equation unchanged. That is, the first term on

the right-hand side describes the transformation of the field due to interaction with the atoms of the beam, and the second

term describes the decay of field modes:

dρF
dt

= I
(

〈U (ρF ⊗ ρA)U
†〉at − ρF

)

−
∑

α=a,b

γα

2

(

α†αρF − 2αρFα
† + ρFα

†α
)

, (14)

ρA = ξd |d〉〈d|+ ξu |u〉〈u| . (15)

The quantity I characterizes the intensity of the atomic beam, and the constants γα are equal to the inverse lifetimes

of a photon inside the resonator α. Averaging over atomic states in the first term occurs due to collapse of the atomic

wave function after it leaves the second resonator. Thus, coupling with the field is destroyed.

It can be shown that in the master equation (14) there are no terms inducing the excitation of phase coherence between

field states with different total numbers of photons in both modes. Physically, this can be explained by the fact that the

emission or absorption of one photon while preserving the field phase occurs only with a change of atomic energy.

In essence, coherence can arise only for a pair of atomic-field states in which the atom populates different levels, and

corresponding terms in the master equation (14) are neglected during the trace over atomic variables. As a result, the field

of a single-cavity single-atom maser in a stationary state is always an incoherent mixture of the Fock field states with a

certain number of photons.

In the case of two resonators, the field is not a mix of the Fock states, since an atom can absorb a photon from the first

resonator and emit it into the second, or vice versa. The atom enters and leaves the pair of resonators in the same state.

Consequently, such a photon exchange process will induce the coherence between field states with the same total number

of photons in the system. Formally, this will lead to non-zero off-diagonal elements of the density matrix Fm,k−m|µ,k−µ,

where k is the total number of photons in a pair of resonators.

The above reasoning allows us to split the field density matrix into non-zero blocks that describe excited field modes

with a certain total number of photons k:

ρF = ρ0 ⊕ ρ1 ⊕ ρ2 ⊕ ..., (16)

ρk =
k

∑

m,µ=0

Fm,k−m|µ,k−µ |m, k −m〉 〈µ, k − µ| . (17)
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In new notation, master equation (14) takes the form of a linear dynamic system for matrices ρk:

1

I
dρk

dt
= L↑ρk−1 + Loρk + L↓ρk+1, γα =

Γα

I , (18)

L↑ρk = ξuUduρkU
†
ud, (19)

Loρk = ξuUuuρkU
†
uu + ξdUddρkU

†
dd − ρk −

∑

α=a,b

γα

2
[α†α, ρk], (20)

L↓ρk = ξdUudρkU
†
du +

∑

α=a,b

γααρkα
†, (21)

where for any k linear maps L↑ act from the Hermitian matrix space ρk to the Hermitian matrix space ρk+1; L0 acts inside

the Hermitian matrix space ρk; L↓ acts from the Hermitian matrix space ρk to the Hermitian matrix space ρk−1.

We are interested in the case of stationary dynamics, in which the process of photons leaving the cavity is completely

compensated by atomic pumping. However, the search for a stationary solution of equation (18) through the recurrence

relation leads to the increasing number of unknown variables due to rank of matrices ρk. This problem can be solved for

trapped states.

At a certain moment in time, while atoms propagate through the resonator, the number of photons reaches a maximum

value and stops increasing. This effect occurs due to the integer value of the Rabi oscillations. That is, the atom has time

to emit a photon into the mode and immediately absorb it while propagating through the resonator. In the case of two

micromaser resonators, the condition for appearance of such trapped states must be written for each resonator α separately;

it is expressed through solution (6):

gαTα

√

Nα + 1 = πkα, kα ∈ N , (22)

where Nα is the maximum number of photons in the resonator α, after which the atoms in the upper level stop emitting a

photon into the mode; kα is the number of integer Rabi oscillations.

If condition (22) is satisfied for both resonators, then the number of photons k in a pair of resonators does not exceed

the maximum value Na + Nb. The matrix ρk rank in the case of trapping is determined by the number of all states

|m, k −m〉 in which the sum of photons is equal to k and the occupation number of each mode does not exceed the

maximum value Nα:

rank[ρk] = min(Nα, k) + 1− k. (23)

The number of non-zero matrices ρk becomes finite and equal to N = Na +Nb + 1, and the first and last matrices have

rank 1. The constraint of the sequence ρk allows us to solve the stationary master equation through the recurrence relation:

dρk

dt
= L↑ρk−1 + Loρk + L↓ρk+1 = 0, (24)

ρk = rk +Akρk−1, ρ0 = r0, (25)

Ak = −(Lo + L↓Ak+1)
−1L↑, AN = 0, (26)

rk = −(Lo + L↓Ak+1)
−1L↓rk+1, rN = ρN , (27)

where ρN = FNa,Nb|Na,Nb
is firstly equal to unity and then calculated using renormalization ρF .

In the next chapter, solution (25) of the stationary governing equation (24) is used to observe the entanglement

between modes for different single-atom maser parameters.

4. Entanglement of resonator modes

By varying the parameters γa, γb, ξu, Na, ka, Nb, kb, it is possible to distinguish four stationary regimes of a single-

atom maser, which allow one to observe its main qualitative properties:

(1) Both resonators are high-Q, and the beam consists of atoms at the upper level only;

(2) Both resonators are high-Q, and the beam consists of atoms at the upper and lower levels;

(3) The first resonator is high-Q, the second is low-Q, and the beam consists mainly of atoms at the upper level;

(4) The first resonator is low-Q, the second is high-Q, and the beam consists mainly of atoms at the upper level.

Let us assume that each mode can be excited only up to the one-photon state Na = Nb = 1. In this case, the density

matrix contains three elements: ρ0[1× 1], ρ1[2× 2] and ρ2[1× 1]. Besides, let ka = kb = 1, that is, the atom has time to

emit and absorb a photon in each mode only once. Explicit form of the density matrices are follow:

ρ0 =
(

F00|00

)

, ρ1 =





F01|01 F01|10

F10|01 F10|10



 , ρ2 =
(

F11|11

)

. (28)
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FIG. 2. Population diagram of the field density matrix. The gray bars show the value of the diagonal elements

Fm,n|µν , the numbers under the bars indicate the regime from the list. The black bars show the coherence param-

eters. The parameters for which a stationary solution was evaluated are given in the table above the graph.

TABLE 1. The parameters of four regimes for which a stationary solution (25) was evaluated

regime ξd ξu γa γb

(1) 0 1 10−3 10−3

(2) 0.5 0.5 10−3 10−3

(3) 0.2 0.8 10−3 1
(4) 0.2 0.8 1 10−3

Figure 2 shows the results from which we can make a conclusion about the conditions for the emergence of a coher-

ence between the states |0, 1〉 and |1, 0〉 in the matrix ρ1. No other cases are generated in the system, since the rank of the

matrices ρ0 and ρ2 is equal to one. To estimate the coherence, we consider the product CP:

C =
|λ2 − λ1|
λ2 + λ1

, (29)

where λ1 and λ2 are the eigenvalues of the matrix ρ1.

P = 1− |F0,1|0,1 −F1,0|1,0|
F0,1|0,1 + F1,0|1,0

. (30)

The parameter C tends toward unity if ρ2 can be represented as the pure state density matrix, while the parameter P
characterizes the degree of mutual excitation of both modes of a maser and tends to zero if only single of the states |0, 1〉
and |1, 0〉 is populated.

Let us focus to main results. Firstly, in the second regime, the coherence is approximately zero (black bars in the

Fig. 2), despite the high quality of the resonators. We explain this effect by the fact that coherence is formed by atoms

at the lower level and atoms at the upper level with the opposite phases. If all states of the field are populated equally, as

in this regime, then the total contribution to coherence turns out to be practically empty. If the beam consists of atoms

only at the upper level, as in the first regime, then coherence between the states |0, 1〉 and |1, 0〉 arises, but these states are

practically unpopulated compared to the state |1, 1〉. Secondly, in the fourth regime, the coherence is significant increased

(black bars), and the levels |0, 1〉 and |1, 0〉 are populated equally (gray bars). It is worth noting that the condition for the

coherence occurrence is the low quality factor of the first resonator into which the atom flies, while the lifetime of photons

in the second resonator should be long. We explain this by the fact that the atoms at the upper level compensate for the

decay process of the field in the first resonator, emit photons into it, and enter the second resonator already in a state of

superposition of two levels.

In addition to observing coherence within a subspace of states with the same number of photons, we looked for

conditions under which two field modes approach to the maximum entanglement. To estimate this one, we used the

entanglement entropy [29] and denoted it by S . Micromaser generates a mix of the field quantum states, therefore we

should calculate entropy for each one and then sum it using the probabilities. Moreover, since the density matrix is a

direct sum (16), the entropy can be calculated for each of the terms ρk independently.

S =

Na+Nb
∑

k=0





rank[ρk]
∑

j=1

pk,jSk,j



 , Sk,j = −
rank[ρk]
∑

q=1

λk,j,q lnλk,j,q, (31)
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FIG. 3. The dependence of the parameter S defined by equation (30) of the maser’s double-mode field on the

quality factor of the resonators. The calculation was made with the following values: ξu = 1, ξd = 0, ka = kb = 3,

Na = Nb = 1. The figure contains the density matrix when the maximum entanglement S ≈ 0.4 is reached.

where Sk,j is the bipartite von Neumann entropy for j-th quantum state |Ψk,j〉 in the mix described by the density matrix

ρk, symbol λk,j,q denotes the q-th eigenvalue of the matrix ρTrk,j .

ρk =

rank[ρk]
∑

j=1

pk,jρk,j , ρk,j = |Ψk,j〉〈Ψk,j | , (32)

ρTrk,j =
∑

m

〈m|a ρk,j |m〉a . (33)

Figure 3 shows a graph of the entanglement enthropy dependence on the relaxation constants of the resonators. When

plotting the graph (as in the study of coherence), the case of trapped states with Na = Nb = 1 is considered, the beam

atoms are at the upper level, and the number of Rabi oscillations is set to new: ka = kb = 3. With these parameters,

entanglement appears especially clearly.

Note that entanglement occurs when the quality factor of the first resonator is much less than the quality factor of the

second resonator. The peak of entanglement at a certain value of the field relaxation rate in the first resonator γa seems

to be curious, as it might show that there is a certain balance between the pumping and relaxation processes, in which the

modes interact with the beam atoms as a single quantum system.

5. Conclusion

In this work, we have proposed the fundamental theory of a single-atom maser with two resonators, the field of which

is pumped by a sparse atomic beam. In the case of trapped field states, a simple form of recurrence relation for the

stationary solution of the master equation of the single-atom maser is obtained. The properties of the stationary solution

indicate the existence of coherence between the states of a pair of modes with the same total number of photons. This

effect was absent in a single-cavity single-atom maser, in which the stationary field is represented as an incoherent mixture

of the Fock field states. The predicted coherence in our case leads to the possibility of generating entangled states, which

was demonstrated by evaluating the entanglement enthropy. In this work, we consider only one special case of trapped

states of a pair of resonators, which is the simplest for qualitative research of the properties of the proposed quantum

system. Other trapped states may exhibit quantum properties that were not discovered in this work, which opens the

prospect for further research.
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ABSTRACT A new constructive solution of field-effect transistor (FET) with a Schottky barrier in a conducting

channel has been identified. The FET is a quasi-ballistic quantum-barrier transistor based on a cylindrical un-

doped GaAs quantum wire in Al2O3 matrix surrounded by a cylindrical metallic gate. A technique for determin-

ing the optimal variation of the semiconductor quantum wire diameter along its axis has been developed. The

optimal dependence of the nanowire diameter on the spatial coordinate along its axis has been determined

providing the possibility of both the elimination of quantum barrier for electrons by the positive gate voltage

and the minimization of transistor channel electrical resistance in contrast to a typical FET with a Schottky

barrier in its conducting channel. The current-voltage characteristics of the transistor based on GaAs quan-

tum wire with an optimal cross-section have been calculated within the framework of a developed combined

physico-mathematical model describing the electron transport in the transistor channel. This model takes into

account the nonparabolicity of the semiconductor band structure, the quantum-dimensional effects, and such

secondary quantum effects as the collisional broadening and displacement of electron energy levels.

KEYWORDS field-effect transistor, semiconductor quantum wire, quasi-ballistic electron transport.
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1. Introduction

The basic element of digital integrated electronics, which performs the role of a normally open switch, is still a

silicon metal-insulator-semiconductor field-effect transistor (MIS FET) with an induced channel [1]. Fulfillment of three

basic requirements for such kind of switching elements for further increasing the degree of integration of the micro- and

nanoelectronics component base, in particular, reducing geometric dimensions, increasing switching speed, and reducing

dissipated power, forces the developers of this kind of device structures to reduce the values of operating voltages on the

gate and drain of the transistor [2,3], to select alternative materials for its conductive channel [4–9], to use other principles

for controlling its switching [10, 11], and also to search new design and topological solutions [3–19]. At least most

of the above requirements can be satisfied by a ballistic nanotransistor with a cylindrical gate, which has the following

features [3, 8, 16–20]: 1) the cylindrical conducting channel contains a one-dimensional electron gas under the electric

quantum limit conditions; 2) the conductive channel is formed of a very high-tech material with a very high electron

mobility; 3) the material of the insulating matrix of the transistor is technologically compatible with the materials of its

conductive channel and electrodes; 4) as in a tunnel FET, the height and width of the potential barrier for charge carriers

is directly controlled by the gate voltage; 5) in the open state of the transistor its electrical conductivity achieves the

maximum possible quantum-mechanical value gπ−1
~
−1e2 [21], where g is the degree of electron gas degeneracy, ~ is the

reduced Planck constant, e is the absolute value of the electron charge.

In due time in scientific papers [22, 23] and monograph [24], a design and topological solution satisfying the above

mentioned conditions was proposed in the form of a normally open transistor switch based on AlXGa1−XAs with a vari-

able fraction of aluminum in the semiconductor lengthwise the conductive channel of the transistor with optimal geometry.

As it was shown in [23, 24], the proposed solution practically achieves the maximum possible theoretical values for such

key parameters of the transistor as the subthreshold swing, the channel conductivity and the ratio of electric currents in

the open and closed states. The geometry of the transistor considered in [22–24] meets the current production capabilities

in the electronics industry. At the same time the necessity of smooth variation of the stoichiometry of AlXGa1−XAs

lengthwise the transistor conductive channel, taking into account the possibilities of both molecular beam epitaxy and

other methods of forming semiconductor structures with specified physical and chemical properties, limits the range of

possible structural and topological solutions for such device structures. In particular, this is why the vertical transistor

was considered in [22–24]. But it is possible to control the electron potential energy profile in the conductive channel

© Pozdnyakov D.V., Borzdov A.V., Borzdov V.M., 2025
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of a quantum-barrier transistor not only by changing the stoichiometry of the ternary semiconductor quantum wire, but

also by varying its diameter along the wire axis, which determines the local position of the electron subband levels in

the semiconductor relative to the bottom of its conduction band [22–24]. And such a method of profiling the effective

potential energy of electrons in the conductive channels of quantum-barrier transistors, firstly, removes the limitation on

the production of the transistors only in the vertical design and, secondly, expands the range of semiconductors that could

be used as base materials for the conducting channels of such kind of device structures.

Thus, in view of the above, the purpose of this work is to optimize a number of topological parameters of a quasi-

ballistic FET with a cylindrical metallic gate and one-dimensional electron gas in the conducting channel based on a

cylindrical undoped GaAs quantum wire with a variable cross-section lengthwise the conductive channel of the transistor,

as well as to calculate its current-voltage characteristics (CVC).

2. Theory

As a starting point, let’s consider the design of a vertical ballistic quantum-barrier FET proposed in refs. [22–24]. Its

schematic view is shown in Fig. 1.

FIG. 1. Cross-section of the transistor by a plane passing through its longitudinal axis of symmetry

(W = 3 nm, radius of rounding of the gate corner regions is 1 nm) [23, 24]

But in contrast to [23, 24], in which the selection of parameters d = 10 nm, H = 30 nm, w = 24 nm and h = 3 nm

of a transistor with optimal geometry was justified, a transistor with varying diameter should not have such a short

conductive channel. The point is that according to [25], the varying cross section of the semiconductor quantum wire

causes the de Broglie waves of electrons to be reflected from regions with varying geometry. To minimize this effect,

the changing cross-section region should be as extended as possible. However, in this case instead of the ballistic regime

of electron transport in the transistor channel, a quasi-ballistic or even diffusive (diffuse) regime takes place [26, 27]

with a sharp drop in the values of channel conductivity and saturation current. In a GaAs quantum wire with a diameter

of 10 nm and temperature of 300 K, the average free path lengths for electrons being scattered by polar optical and

acoustic phonons are minimal for near-zero kinetic energy of electrons and their energies slightly higher than the polar

optical phonon energy (35.5 meV), and according to calculations are respectively about 36 and 28 nm in the regime of

current saturation considering the Pauli prohibition principle, the nonparabolicity of semiconductor band structure and

the secondary quantum effects. According to [26,27], if the length of the conducting channel of the transistor is 30 nm or

less then almost all electrons transfer through the channel in the ballistic regime. Taking into account all aforementioned,

the compromise length of the transistor channel should be of such a minimum possible value, which for the majority of

particles from the electron ensemble, on the one hand, corresponds to the transport regime not worse than quasi-ballistic,

and on the other hand, as much as possible ensures the accuracy of the Wentzel-Kramers-Brillouin approximation [28]

in the quasi-classical description of the one-dimensional longitudinal motion of electrons as much as possible in large

regions of the conductive channel of the transistor [29], when one can neglect the reflection of the de Broglie waves from

regions with spatially varying potential energy. According to the theory developed in [25], it is enough to increase the

length H of the conductive channel of the transistor based on GaAs quantum wire by a factor of 3 to minimize the coherent

reflection of most electrons from the classically accessible regions for them in the channel. So it is reasonable to choose
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the values of the geometrical parameters of the transistor as follows: H = 100 nm, w = 30 nm, h = 35 nm, d = d(z)
(d0 = d(0) = d(H) = 10 nm).

To determine the optimal dependence of the GaAs quantum wire diameter on the z coordinate along its axis (z = 0
corresponds to the beginning of the conductive channel of the transistor at the source boundary, z = H corresponds to

its end at the drain boundary), it is first necessary to find the distribution of the electric potential ϕ(r, z) in the transistor

structure at the defined values of the voltage at the drain (VD = 0) and at the gate VG (the voltage at the source is

assumed to be always equal to zero). It is necessary to calculate the dependence of ϕ(r, z) under such conditions for the

following reasons: first, at zero potential at the source and drain, the minimum possible voltage applied to the gate should

completely eliminate the potential barrier in the conductive channel of the transistor with the formation of flat subbands

and almost unity probability of coherent transfer of electrons through the source-drain region over the entire range of

their energy; second, at zero potential at the gate and nominal voltage at the drain, the electric current in the conductive

channel of the transistor should be vanishingly small for both transfer of the particles over the barrier and their tunneling

through it. These two contradicting requirements can be resolved for some single value of the reference gate voltage VG0.

In [22], it was proposed to choose a typical value of VG0 equal to 0.5 V for transistors with one-dimensional conducting

channels [3, 19, 20]. However, in contrast to [22], according to [23, 24], higher values of electrophysical parameters and

electrical characteristics of the nanotransistor can be obtained at a lower value of the reference gate voltage (VG0 = 0.4 V)

due to the consideration of a device with optimal geometrical parameters. Taking it into account, it is reasonable to choose

the reference gate voltage equal to 0.4 V.

In the case under consideration, the spatial distribution of the electric potential in the conductive channel of the tran-

sistor structure shown in figure 1 can be obtained by numerical solution of the Poisson equation in cylindrical coordinates.

In this case, for significant reduction of the computational complexity of ϕ(r, z) calculation, as in [22–24], a number

of standard approximations can be applied. First, taking into account a small difference between the values of relative

dielectric permittivity of Al2O3 [30] and GaAs [31], one can neglect a small jump in the value of the normal component

of the electric field strength at the boundary of Al2O3/GaAs, which only slightly affects the potential energy of electrons

in the electric field through the local displacement of their energy levels in the semiconductor quantum wire. Second, the

electric charge of electrons in the conductive channel of the transistor can be neglected. In the closed state of the transistor,

neglecting the mobile charge is obviously quite justified. In the open state of the transistor, the maximum possible electric

current flowing in its conducting channel, according to the estimates made for the considered geometry of the structure

and the position of the Fermi level (EF = 0.2 eV [22–24]) relative to the bottom of the GaAs conduction band in the

source and drain regions of the transistor, creates an additional rise in the potential barrier between the source and the gate

in the maximum by about 30 mV [22–24]. This results in a shift of no more than 60 mV in the transistor CVC by VG

(VG → VG + 0.06 V). Whereas the above approximation frees from the necessity of iterative self-consistent solution of

two-dimensional Schrödinger and Poisson equations for each of the calculated points of the transistor CVC. The result of

the accepted approximations is the possibility of reduction of the Poisson equation to the Laplace equation in the form of

∂2φ

∂r2
+

1

r

∂φ

∂r
+

∂2φ

∂z2
= 0 (1)

with corresponding Dirichlet boundary conditions at the Al2O3 /“metallic alloy” boundaries, Neumann boundary con-

ditions at the boundary of the modeling domain in Al2O3 and at the symmetry axis of the conductive channel of the

transistor taking into account that ϕ ∼ r2 at r → 0 for any values of z.

After solving the Laplace equation, the electron effective potential energy uϕ(z) in an electric field can be estimated

by means of standard methods of quantum mechanics, namely in the framework of perturbation theory [20, 32, 33]:

uφ(z) = −
8e

d2(z)J2
1 (β10)

∫ d(z)/2

0

φ(r, z)J2
0

(

2β10r

d(z)

)

rdr. (2)

In equality (2), Jn is the Bessel function of the first kind of n-th order, β10 = 2.404825558 [32]. Here, as in other

studies [20,22–24,27,32–34], the approximation of the Al2O3/GaAs boundary being impermeable for electrons (infinitely

high potential barrier) and the approximation of the electric quantum limit are considered. In the latter one, the excited

quantum states in Γ valley and quantum states in L and X valleys of the semiconductor quantum wire are not taken into

account that in due time was justified in [22–24]. Under the conditions of the electric quantum limit almost all electrons

are in the ground quantum state of Γ valley of GaAs. The transverse component of their energy E0 can be calculated by

the formula [20, 22–24, 31, 34–36].

E0(z) =
1

2α

(
√

1 +
8αβ2

10~
2

m∗d2(z)
− 1

)

, (3)

where m∗ is the effective mass of electron in the GaAs conduction band, α is its nonparabolicity parameter.

Calculation of the optimal dependence d = d(z) under the flat subband condition for the ground quantum state in Γ
valley of GaAs at ϕD = ϕS = 0 and ϕG = VG = VG0 is carried out by solving the equation [22–24].

U(z) = uφ(z) + ∆E0 (d(z)) = uφ(z) + (E0 (d(z))− E0 (d(0))) = 0. (4)
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The numerical solution of equation (4) allows the profile d(z) to be recovered, at which, for a given dependence uϕ(z),
the flat subband transfer regime is provided for electrons in the ground quantum state of GaAs over the entire length of

the transistor channel (U(z) ≡ 0). Fig. 2 shows the result of such a numerical calculation for VG0 = 0.4 V.

FIG. 2. Optimal dependence of GaAs quantum wire diameter along the transistor channel from the

source to the drain

Fig. 3 shows a number of dependences characterizing the electron potential energy profiles lengthwise the transistor

channel. In particular, it follows from this figure that, despite the significant voltage applied to the drain, the region of the

conductive channel of the transistor near the source is still in the regime of the flat subband due to the screening of the

drain field by the gate. At such a shape of the bottom of the semiconductor conduction band in the transistor the electron

transfer from the source to the drain is ensured with practically unit probability even at E → E0(0).

FIG. 3. Variation of electron potential energy profiles along the conductive channel of the transistor

from source to drain: dashed curve – potential barrier ∆E0 in the absence of electric fields (VD = VG =
0); dotted curve – the potential energy of electrons in the electric field uϕ at VD = VG = VG0 = 0.4 V;

solid curve – total potential energy of electrons U at VD = VG = VG0 = 0.4 V

For the considered topology of the transistor structure the calculation of the absolute value of the electric current

Ie flowing in the conducting channel can be carried out within the Landauer-Buttiker formalism [14, 21, 22] using the

approximation [23, 24].

Ie =
e

π~

∫

∞

0

(

fFD (E,EF − E0(0)) t
S
sc(E)− fFD (E,EF − E0(0)− eVD) t

D
sc(E)

)

tch(E)dE, (5)

where E is the level of electron kinetic energy in the source, tch is the probability of coherent transfer of electron through

the region between the transistor electrodes, tS/Dsc is the probability of the electron transfer without scattering through

classically accessible regions in the conducting channel from the source (S) or drain (D) side.

To find the value of tch at a defined value of E, in general, the Schrödinger equation should be numerically solved

with appropriate boundary conditions. However, its solution, taking into account the effects of nonparabolicity of the

semiconductor band structure, is an extremely difficult problem from the computational point of view [36]. But, taking
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into account a number of rigorous generalizations obtained in [36] for the boundary conditions imposed on the wave

function when nonparabolicity effects are taken into consideration, it is possible to calculate the dependence tch(E)
in another way, in particular, by means of the transfer-matrix method [34, 37, 38]. For this purpose the entire region

from the source (z = 0) to the drain (z = H) of the transistor is divided into a large number of Q(q = 0, 1, ..., Q)

intervals (zq −∆z/2, zq +∆z/2) of equal width ∆z = H/Q, in each of which the dependence U(z) is replaced by the

constant values of Uq = U(zq) (∀f : fq = f(zq)). That is, the dependence of the potential energy of electrons U in the

transistor channel on the coordinate z is replaced by its piecewise stepwise approximation Uq . In such a case, applying

the transfer-matrix method, the dependence tch(E) can be rigorously calculated from Uq [36] with much higher accuracy

than through the finite-difference approximation of the one-dimensional Schrödinger equation on the same spatial grid

{zq} [22–24, 34, 37, 38]:

tch(E) = 1−

∣

∣

∣

∣

B(E)

A(E)

∣

∣

∣

∣

2

, (6)





A(E)

B(E)



 =

(

Q−1
∏

q=0

Mq(E)

)





1

0



 , (7)
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1
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q+1kq

)
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m∗

q+1kq

)
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, (8)

m∗

q = m∗

(

(E − Uq)
2

Γ2
0 + (E − Uq)2

)1/2
(

(E − Uq)
2(γq + 2α(E − Uq))

(

Γ0 + (Γ2
0 + (E − Uq)2)1/2

)2 +
Γ0(2γq + 3α(E − Uq))

Γ0 + (Γ2
0 + (E − Uq)2)1/2

)

, (9)

γq = 1 + 2αE0(dq) =

√

1 +
8αβ2

10~
2

m∗d2q
, (10)

kq = ~
−1

(

2m∗|E − Uq|(E − Uq) (γq + α(E − Uq))

Γ0 + (Γ2
0 + (E − Uq)2)1/2

)1/2

. (11)

In the presented equations, Γ0 = 10 meV is a parameter characterizing the average value for the collisional broaden-

ing and displacement of the energy levels in the conductive channel of the transistor at temperature T = 300 K, which is

calculated within the framework of the theory developed in manuscripts [23, 39–42], when considering the scattering of

electrons by polar optical and acoustic phonons.

The dependence of tsc(E) can be estimated by Monte Carlo simulation of electron transport in classically accessible

regions (∀zq : Uq < E) [37] applying rather simple algorithm. After casting the value of energy E for an electron injected

into the transistor channel according to the Fermi-Dirac distribution function in the source or drain, it is supposed that the

particle has overcome the classically accessible regions between the source and drain if during the time of simulation of

its motion and scattering, taking into account the occupancy of the final quantum states according to the Pauli prohibition

principle, it has achieved the boundary of the potential barrier in the tunneling regime or the boundary of the opposite

electrode of the transistor in the case of over-barrier transport. Otherwise, if the electron has left the modeling region,

returning back to the injection region, it is considered as reflected particle. To obtain a smooth and stable dependence

tsc(E) with respect to the number of simulated particle trajectories, at least approximately 10 million simulation histories

should be accumulated.

3. Calculation of the transistor CVCs and discussion of the obtained results

Figs. 4,5 show the results of calculation of the electric current in the conductive channel of the transistor at T = 300 K

and different values of the voltages on its gate and drain. During the Monte Carlo simulation of charge carriers scattering

processes, such electron scatterers as confined polar optical and acoustic phonons were considered according to [39, 41].

The dependencies of electric current in the transistor on the voltage on its drain at specific gate voltages, as illustrated

in Fig. 4, are very typical and similar to those observed for conventional MIS-transistors. The current dependencies on

the gate voltage at different values of the drain voltage, as presented in Fig. 5, also exhibit a highly characteristic form,

corresponding to the pass-through CVCs of conventional MIS-transistors up to the voltage VG0, at which the potential

barrier for charge carriers is completely eliminated. But under the condition that 0.5V > VG > VG0 = 0.4 V, in contrast

to the ballistic quantum-barrier transistor which has a plateau on the dependence of Ie(VG) in this region with negative

differential conductivity close to zero, that takes place in case of neglecting the electron scattering processes [22], or

positive differential conductivity close to zero, that takes place in case of taking into account these processes [24], the

CVCs of the considered quasi-ballistic transistor has no such a valley at 0.4V < VG < 0.5 V.

As follows from the simulation results, the maximum saturation current, which is equal to 3.89 µA at T = 300 K

and VD = VG = VG0 = 0.4, is 56.0 percent of the maximum possible current in the considered transistor (calculated by
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FIG. 4. Output CVC of the FET based on GaAs quantum wire in linear (a) and logarithmic (b) scales:

curves in series from top to bottom – VG = 0.4, 0.3, 0.2, 0.1 and 0 V

formula (5) at VD → ∞ under the condition that tch(E)tsc(E) ≡ 1 [22–24]). The maximum channel conductance of

the transistor at VG = VG0 = 0.4 V, VD = 0 and T = 300 K achieves 55.5 percent of the maximum possible quantum

mechanical value of e2/(π~). The ratio of the electric current in the open transistor Ion (VG = VG0) to the current in

the closed transistor Ioff (VG = 0) is 5·105 at T = 300 K and VD = 0.2–0.4 V. At VG = 0 and VD = 0.2-0.4 V the

subthreshold swing takes a value of 101 percent relative to the minimum possible theoretical value of ln (10)kBT/e which

is equal to 59.53 mV/dec at a temperature equal to 300 K (kB is the Boltzmann constant).

When the gate voltage is equal to 0.4 V and more, the transistor conducting channel is completely open due to the

complete elimination of the potential barrier for electrons at VG ≥ 0.4 V (see Fig. 3,5). Moreover, despite the increase

in the fraction of coherently reflected electrons from the region [0, H] of the conducting channel of the quasi-ballistic

transistor, there is no typical plateau on CVC of the ballistic transistor at VG > VG0 [22]. The obtained behavior of

the pass-through CVC at VG > VG0 is explained by the decrease in the reverse flux of incoherently reflected electrons

in the region [0, H], significantly exceeding the increase in the reverse flux of charge carriers coherently reflected from

this region. This fact indicates that the conductive channel length of the transistor equal to 100 nm is not optimal and

can be reduced with increasing channel conductivity and saturation current along with increasing the subthreshold swing

to values not worse than 105% relative to the minimum possible theoretical value [22–24]. In particular, basing on the

results of the present study and the results from [22–24], it can be concluded that the optimum value of h0 satisfies the

inequality chain like 3 < h0 < 30 nm. Obviously, the optimum will be achieved when the backward flux of electrons

incoherently reflected by phonons is equal to the backward flux of particles coherently reflected from the surface of the

quantum wire which tapers sharply along its axis [25]. Unfortunately, within the approach considered in the present study,

it is not possible to find the optimal value of h0 in terms of the maximum channel conductance or maximum saturation

current. To obtain a relevant optimal value of h0, it is necessary to use much more rigorous and computationally very

complex methods for calculating the electric current in one-dimensional conducting channels with complex topology and

decaying electron quantum states because of decoherence processes [43–45]. Here, we can only assume that h0 ∼ 10 nm

(H0 ∼ 50 nm).
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FIG. 5. Pass-through CVC of the FET based on GaAs quantum wire in linear (a) and logarithmic (b)

scales: dashed curve – VD = 0.1 V, solid curve – VD = 0.2 V, dotted curve – VD = 0.4 V

4. Conclusions

Thus, within the framework of the present study, a topological solution for a new construction of FET with a Schot-

tky barrier in its conductive channel in the form of a quasi-ballistic quantum-barrier transistor based on a cylindrical

undoped GaAs-in-Al2O3 quantum wire with an optimally varying cross-section lengthwise the conducting channel has

been found. The CVCs of such a transistor have been calculated within the framework of the developed combined physico-

mathematical model describing electron transport in its conducting channel taking into account the semiconductor band

structure nonparabolicity, quantum-dimensional effects and such secondary quantum effects as the collisional broadening

and displacement of the electron energy levels.

The proposed solution, among other things, opens the prospect of development and production of quantum-barrier

FETs based on semiconductor quantum wires with varying rectangular cross-section lengthwise the conducting channel

along one or both transverse directions. In the limit, it could be a semiconductor quantum layer with optimally varying

thickness lengthwise the two-dimensional conducting channel of the transistor separated from two planar metal gates by

some oxide or nitride insulator. As an example, it could be such a heterostructure as “metal/SiO2/Si[111]/SiO2/metal”.

Orientation of the semiconductor along the [111] direction perpendicular to the heterojunctions is necessary to ensure the

same position of the lowest energy subbands in all six valleys of silicon relative to the bottom of its conduction band.

When changing the Si quantum layer thickness from 4.8 nm (15 atomic layers) through 1.6 nm (5 atomic layers) to

4.8 nm (15 atomic layers), a profile of the potential barrier for electrons is formed close to the optimal profile obtained in

the present study.
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ABSTRACT In this work, computer molecular dynamics (MD) studies of the orientation and structural conforma-

tions of the alcohol dehydrogenase enzyme (hereinafter ADH) in complex with nicotine adenine dinucleotide

(hereinafter NAD) during sorption on the surface of electrode materials using graphite as an example were

carried out.
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1. Introduction

The current study is devoted to the structural aspect of the ADH (alcohol dehydrogenase) enzyme and its co-enzyme

NAD (Nicotinamide-Adenine-Dinucleotide) [1–5]. As shown by X-ray crystallography, the ADH enzyme undergoes

global conformational changes, including rotation of the catalytic domain relative to the coenzyme binding domain and

rearrangement of the active center to obtain a catalytically active enzyme. The conformational change requires a complete

coenzyme and depends on various chemical or mutational substitutions that can increase the catalytic activity due to

changes in the isomerization kinetics and the rate of dissociation of coenzymes [2–6]. As for the structural aspect of the

enzyme, using experimental observations and mathematical modeling of the protein, the orientation of ADH on various

sorbents and conductive matrices were studied depending on the pH of the solution. As is known, deactivation of the

enzyme caused by unsuitable conditions (temperature, pH), thereby introducing a change in the activity of the ADH

enzyme. The implementation of various options includes, for example, the immobilization of a two-substrate enzyme on

the surface of electrode materials [7–15]. However, it should be noted that the experimental study of the above issues

is difficult. Therefore, in recent years, computational and simulation analysis methods have been widely used for these

purposes [16–23]. Molecular dynamics (MD) modeling is currently widely used with many software packages designed

for MD modeling (the DL POLY, which contains and programmed all the potentials necessary for construction; the

AMBER software package for simulating protein structures, Table 1).

Molecular dynamics simulation involves a series of steps, shown in Fig. 1.

In this work, we used computer molecular dynamics (MD) modeling to study the structural and conformational

changes of the ADH enzyme with its cofactor NAD occurring in an aqueous solution interacting with the surface of the

electrode material. Graphite serves as the surface and the MD analysis data allow studying the changes in the ADH + NAD

structural conformations on atomic-molecular level in detail.

© Baigunov I.A., Kholmurodov Kh.T., Gladyshev P.P., 2025
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TABLE 1. Potentials used in the AMBER software package

Potential Purpose

U (R) =
∑

bonds

Kr(r − req)
2

Harmonic potential for two atoms

U (R) =
∑

angles

Kθ(θ − θeq)
2

Harmonic potential for angular

bond of three atoms

U (R) =
∑

duhedrals

Vn

2
(1− cos [nϕ− γ]) Harmonic potential for four atoms

U (R) =
∑

i

∑

j

[(

Aij

R12
ij

−

Bij

R6
ij

)

+
qiqj

Rij

]

Lennard–Jones potential (van der

Waals interactions) and electro-

static interaction

FIG. 1. Main stages of the numerical experiment

2. Experimental part

In this section, we present the descriptions of the main parameters and algorithms used in the computational molecular

dynamics (MD) simulations. In this study, we used both CPU and GPU-based computing environments to perform

the MD simulations using the AMBER package. We used multiple computing environments such as a 16-core cluster,

Geforce GPU (GPU = ( GTX 1080 Ti)) to implement the MD simulations in Amber 18 (pmemd; MD/AMBER) with

GPU acceleration (pmemd.cuda). We refer to the Amber 2018 program code and reference manual [3, 16–18]. The

calculations were carried out on the servers of the Heterogeneous Platform “HybriLIT” of the Multifunctional Information

and Computing Complex (MIC), MLIT (M.G. Meshcheryakov Laboratory of Information Technologies), JINR (Joint

Institute for Nuclear Research). The heterogeneous platform consists of the supercomputer “Govorun” and the educational

and test site “HybriLIT” at JINR, Dubna, and on the local server of the Frank Laboratory of Neutron Physics (LNP) of

JINR. We have implemented the main production MD simulations (CPU / GPU) (common also with many other simulation

types) for PDB ID: 3COS crystal structure of human alcohol dehydrogenase class II (ADH) [19]. In this work, MD

simulations were performed with the Amber 18 code (CPU/GPU environment). The MD simulations on the molecular

system ADH + NAD + water + carbon surface (Fig. 2) were performed in three steps: energy minimization, NVT and

NPT relaxation procedures. As for NVT: The canonical ensemble, where the system is kept from changes in moles (N ),

volume (V ), and temperature (T ). This set-up is also known as constant-temperature molecular dynamics, and requires a

thermostat. The NPT: The isothermal-isobaric ensemble, where the system is kept from changes in moles (N ), pressure

(P ), and temperature (T ). Both a thermostat and barostat are needed. Due to the Amber 18 code’ capabilities we used

the Langevin Dynamics (NVT and NPT) to attempt to mimic solvent viscosity by introducing things that occasionally

cause friction and perturb the system. When used to control temperature, a small damping constant, γ, should be used.

In the Berendsen Thermostat: the system is weakly coupled to a heat bath at a set temperature. The thermostat doesn’t
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(a) (b)

FIG. 2. General molecular design of the system ADH + NAD + water + graphite surface

mirror the canonical ensemble for small systems, but large systems are roughly ok. It uses a leap-frog algorithm to rescale

velocities of particles, controlling temperature.

The MD simulations in Amber18 with CPU/GPU acceleration (pmemd/pmemd.cuda) were performed for three main

setup phases that contain the main MD production:

1) Minimization of the system to reduce bad contacts;

2) Slowly heat the system to the target temperature;

3) Equilibration of the system at the target temperature.

In the first step, we minimized the system by applying constraints to the backbone atoms and to some atoms. The

minimization was performed using sander instead of pmemd to ensure and evaluate the behavior of the energies during

the minimization step. We then ran constant-volume heating simulations on the minimized structures to slowly heat the

system from 10 to 303 K over some initial 2.0 ns steps of the simulation with a target temperature of 303 K. We retain

the constraints on the backbone atoms, but with a weaker force constant than that used during the minimization. These

simulations were performed using pmemd, pmemd.MPI, sander, or sander.MPI instead of using the GPU-accelerated

code with pmemd.cuda. At the equilibration step, we equilibrate the system (ADH + NAD + surface + water) at a target

temperature of 303 K.

3. Results and discussion

In Fig. 3(a–d), we present the obtained images of the ADH + NAD adsorption process on the graphitic carbon

surface during long-term 100 ns dynamic changes from (a) the initially relaxed state to (b–c) intermediate states and

(d) the final equilibrium state. The ADH + NAD enzyme underwent multimillion-second conformational and rotational

changes before adsorption on this graphitic carbon (C-surface) to be finally trapped and relaxed on the surface. The

dynamics of the ADH + NAD adsorption behavior on the graphitic carbon surface was monitored using MD/AMBER

calculations and Visual Molecular Dynamics (VMD) software. Fig. 3(a–d) presents the results of MD calculation with

(ntb=1) periodic boundaries of constant volume when minimizing and initially heating/equilibrating the whole system,

ADH + NAD + aqueous solvent + graphite surface, and with (ntb=2) periodic boundaries of constant pressure when used

for the production run after we heated and equilibrated at constant volume.

It is worth noting that finding the relaxed equilibrium of the ADH + NAD + water + surface system is a slow

process, so far for each set of MD simulations we have performed 100 ns of calculations using the extremely fast module

“pmemd.cuda”. One of the non-trivial events in the conformational structural dynamics of the whole ADH + NAD +

water/graphite system and tracking of individual amino acid residues should be the behavior of the catalytic loops of the

enzyme. Fig. 4(a–b) shows the dynamic patterns of the ADH + NAD/C-surface and the adsorption processes accompanied

by gradual changes in the orientation of the two catalytic loops of the ADH + NAD molecule relative to the graphite

surface. An important observation is that these two catalytic loops are located close inside the ADH + NAD molecule,

upon reaching the adsorbing graphite surface we can see the separation of these loops from each other. The key summary

of the whole process, as shown in Fig. 3(a–d), should be the separation from each other and hence the opening of the

important catalytic loops of ADH + NAD due to the influence of the adsorbing C-surface of these two enzyme loops.
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(a) (b)

(c) (d)

FIG. 3. Adsorption of ADH + NAD on graphite (C-surface) during 100 ns of dynamic and conforma-

tional changes

(a) (b)

FIG. 4. The ADH + NAD orientation together with the position of the catalytic loops of ADH + NAD

on the graphite surface of carbon
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Next, Fig. 5 shows the arrangement of the two above-mentioned catalytic loops of the ADH + NAD molecule relative

to the graphite surface. Here, the two terminal amino acid residues THR290 and ILE317 with the separations between

these two terminal amino acids is shown.

FIG. 5. Position of the catalytic loops of ADH + NAD on the graphite surface of carbon (a). Dynamics

of the distance between the catalytic loops of ADH + NAD depending on time (b)

The MD results presented in Fig. 5 for the arrangement of the catalytic loops during the adsorption of the ADH + NAD

molecule on the graphitic carbon surface in the final (100 ns) state of time clearly to confirm the important observation

mentioned above that the two catalytic loops separate from each other upon reaching the adsorbing graphite surface,

whereas they were initially located close to each other inside the ADH + NAD molecule. The above observation and

the presented data on the dynamics of the ADH + NAD catalytic loops on the graphitic carbon surface correlate with the

dynamic changes and rotations of the NAD coenzyme inside the ADH molecule. Using the data in Figs. 4–5, we observe

the conformational changes of NAD upon ADH adsorption on the surface and the open gap between the catalytic loops.

In Fig. 6, we have presented the positions of the atoms at the NAD chain, as well as the atoms in the central region of

NAD. Fig. 6 shows the structure of the NAD molecule which correlate with the dynamical changes shown in Figs. 4–5

above.

FIG. 6. The NAD structure with entered points correlates with dynamical changes in the ADH

It is worth noting that the current observations correlate with some experimental works related to the immobilization

and adsorption of ADH enzyme on the carbon surface, the location of the enzyme and its fixation on the carbon platforms.

It is seen that the dynamic changes of γ over time completely correlate with the dynamics of the change in the distance

between the catalytic loops of ADH + NAD on the graphite surface. The comparison of the results in Figs. 4–5 are the

key features of the entire process of ADH + NAD/C-surface adsorption, which is accompanied by a nontrivial structural

transformation of the NAD coenzyme, correlating with the behavior of the catalytic loops of the ADH enzyme. The

above observation and the presented data on the dynamics of the ADH + NAD catalytic loops on the graphite surface
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correlate with the dynamic changes and rotations of the NAD coenzyme inside the ADH molecule. Moreover, the results

also indicate that in order to maintain the environment in which the ADH enzyme exhibits good activity and to provide

conditions for future technological applications, physiological conditions and ambient temperature can be satisfactorily

applied to the enzymatic system including the dehydrogenase enzyme. At the same time, the choice of carbon surfaces

and platforms is motivated by good control of the enzyme arrangement on the surface at a very low enzyme consumption.

The kinetic rates obtained for the ADH enzyme attached to the carbon surface indicate a decrease in activity after the

immobilization and fixation process, a significant loss of enzymatic activity observed after immobilization, although the

affinity between the enzymes and their substrates and coenzymes is preserved.

4. Conclusion

In summary, the structural conformations of the alcohol dehydrogenase (ADH) enzyme with its cofactor nicotinamide

adenine dinucleotide (NAD) were studied on a graphite surface (C-surface) using the MD (molecular dynamics) simula-

tion method. The ADH + NAD enzyme was simulated in an aqueous environment, the molecules of which are constantly

in thermal motion and collide with the protein globule, thereby providing chaotic linear and rotational motion, as well

as conformational movements. Subsequently, the numerical MD experiment implemented in the current study using the

AMBER-18 package (implementation of the fast module “pmemd.cuda”) provides useful statistics regarding the most

interesting aspects of the structural study of ADH related to the conformational changes of ADH, including the rotation

of the catalytic domain, the coenzyme binding domain, the rearrangement of the active site, etc. The above analysis

is important for understanding the atomic/molecular details of the catalytically active enzyme, so far the long dynamic

simulation of 100 ns allows tracking the conformational and rotational changes of the ADH + NAD system in aqueous

medium.
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[7] Höhn S., Zheng K., Romeis S., Brehl M., Peukert W., de Ligny D., Boccaccini A.R. Effects of medium pH and preconditioning treatment on

protein adsorption on 45S5 bioactive glass surfaces. Advanced Materials Interfaces, 2020, 7 (15), 2000420.

[8] Benavidez T.E., Torrente D., Marucho M., Garcia C.D. Adsorption and catalytic activity of glucose oxidase accumulated on OTCE upon the

application of external potential. J. of colloid and interface science, 2014, 435, P. 164–170.

[9] Wang F., Zhang Y.Q. Bioconjugation of silk fibroin nanoparticles with enzyme and peptide and their characterization. Advances in protein chemistry

and structural biology, 2015, 98, P. 263–291.

[10] Welborn V.V. Structural dynamics and computational design of synthetic enzymes. Chem. Catalysis, 2022, 2 (1), P. 19–28.

[11] Norde W., Lyklema J. Why proteins prefer interfaces. J. of Biomaterials Science, Polymer Edition, 1991, 2 (3), P. 183–202.

[12] Andrade J.D. (Ed.). Surface and interfacial aspects of biomedical polymers, 1985, Plenum Press, New York, 1985, 1, P. 249–292.

[13] Gladyshev P.P., Shapovalov Yu.A., Kvasova V.P. Reconstructed oxidoreductase systems, Science, Alma-ata, KazSSR, 1987, 187 p.

[14] Gladyshev P.P., Goriaev M.I., Shpil’berg I.G., Iu A.S. Sorption immobilization of NAD-dependent enzyme systems. I. Influence of electrostatic

interactions on the orientation of alcohol dehydrogenase on the sorbent surface. Molekuliarnaia Biologiia, 1982, 16 (5), P. 938–942. (in Russian).

[15] Gladyshev P.P., Goriaev M.I., Shpil’berg I.G. Sorption immobilization of NAD-dependent enzyme systems. II. Influence of hydrophobic interac-

tions on the orientation of alcohol dehydrogenase on the sorbent surface. Molekuliarnaia Biologiia, 1982, 16 (5), P. 943–947. (in Russian).

[16] Foresman J., Frish E. Exploring chemistry, Gaussian Inc., Pittsburg, USA, 1996, 21, P. 93–123

[17] Leach A.R. Molecular modelling: principles and applications. Pearson education, Harlow, 2001, 727 p.

[18] Case D.A., Cheatham III T.E., Darden T., Gohlke H., Luo R., Merz Jr. K.M., Woods R.J. The Amber biomolecular simulation programs. J. of

Computational Chemistry, 2005, 26 (16), P. 1668–1688.

[19] Case D.A., Aktulga H.M., Belfon K., Cerutti D.S., Cisneros G.A., Cruzeiro V.W.D., Merz Jr. K.M. AmberTools. J. of Chemical Information and

Modeling, 2023, 63 (20), P. 6183–6191.

[20] Lee T.S., Cerutti D.S., Mermelstein D., Lin C., LeGrand S., Giese T.J., York D.M. GPU-accelerated molecular dynamics and free energy methods

in Amber18: performance enhancements and new features. J. of Chemical Information and Modeling, 2018, 58 (10), P. 2043–2050.

[21] Cruzeiro V.W.D., Amaral M.S., Roitberg A.E. Redox potential replica exchange molecular dynamics at constant pH in AMBER: Implementation

and validation. The J. of Chemical Physics, 2018, 149 (7).

[22] Kholmurodov K.T. Models in bioscience and materials research: Molecular dynamics and related techniques, Nova Science Publishers Ltd., New

York, 2013, 208 p.

[23] Kholmurodov K.T. Computational materials and biological sciences, Nova Science Publishers Ltd., New York, 2015, 188 p.

Submitted 21 January 2025; revised 19 February 2025; accepted 20 February 2025



198 I. A. Baigunov, Kh. T. Kholmurodov, P. P. Gladyshev

Information about the authors:

Ivan A. Baigunov – Dubna State University, Department of Chemistry, New Technologies and Materials, Universitetskaya,

19, Dubna, Moscow Region, 141980, Russia; ORCID 0009-0000-8380-6218; vanek1997fev@yandex.ru

Kholmirzo T. Kholmurodov – Dubna State University, Department of Chemistry, New Technologies and Materials, Univer-

sitetskaya, 19, Dubna, Moscow Region, 141980, Russia; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear

Research, Joliot-Curie, 6, Dubna, Moscow Region, 141980, Russia; Lomonosov Moscow State University, Department of

Fundamental Nuclear Interactions, Faculty of Physics, Leninskiye Gory, GSP-1, Moscow, 119991, Russia; S.U. Umarov

Physical-Technical Institute (PhTI), Aini ave., 299/1, Dushanbe, 734063, Republic of Tajikistan;

ORCID 0000-0002-9415-8276; kholmirzo@gmail.com

Pavel P. Gladyshev – Dubna State University, Department of Chemistry, New Technologies and Materials, Universitet-

skaya, 19, Dubna, Moscow Region, 141980, Russia; ORCID 0000-0002-7449-4475; pglad@yandex.ru

Conflict of interest: the authors declare no conflict of interest.



NANOSYSTEMS:

PHYSICS, CHEMISTRY, MATHEMATICS

Original article

Abdulhaq K., et al. Nanosystems:

Phys. Chem. Math., 2025, 16 (2), 199–208.

http://nanojournal.ifmo.ru

DOI 10.17586/2220-8054-2025-16-2-199-208

Thermal and magnetic properties and density of state of in 3D SnTe (001) surface

state under combined exchange and strain effects

Khaled Abdulhaq, Mohammad K. Elsaid, Diana Dahliah

Physics department, An-Najah National University, Nablus, Palestine

Corresponding author: Mohammad K. Elsaid, mkelsaid@najah.edu; Diana Dahliah, diana.dahliah@najah.edu

ABSTRACT This paper presents a comprehensive investigation of the essential properties of topological insula-

tor materials like electronic, thermal, and magnetic quantities. We considered crystalline topological insulators

tin telluride (SnTe), deposited on a magnetic substrate material. The anisotropic mass Hamiltonian is consid-

ered to obtain eigenenergy spectra expression in the presence of exchange proximity and strain effects. We

showed that the strain has an important effect in shifting the position of the valley or Dirac points in the recip-

rocal space; an important result that leads to significant role in using the topological material as an electronic

component in the new hot research area called valley electronics. We displayed the dependences of the com-

puted density of states, heat capacity, and the magnetic susceptibility of the crystalline topological material,

SnTe, on the Hamiltonian physical parameters.
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1. Introduction

Many aspects of condensed matter physics are related to classifying phases of matter [1, 2]. Over the past decades,

the study of the quantum Hall effect has led to a different classification model, based on the notion of topological order.

Recently, a new class of materials has been emerged which is called a topological insulator (TI) [3–5]. Topological

insulators are electronic materials that have a bulk band gap like an ordinary insulator, but have protected conducting

states on their edge or surface. Topological insulators come in various forms, including 2D topological insulators and

3D topological insulators, as well as topological superconductors, which have been investigated thoroughly qualitatively

and quantitatively [6–8]. 3D topological insulators form a class of materials that exhibit interesting electronic properties,

particularly in their surface states. These materials are insulators in the bulk, meaning that their interior does not conduct

electricity. However, they have conductive surface states that are topologically protected [9]. The electronic properties

of topological insulators are governed by their band structure, which is a representation of the allowed energy levels for

electrons within the material. In a topological insulator, there is a band inversion between the valence and conduction

bands, leading to the formation of surface states with a Dirac cone-like dispersion.

In topological crystalline insulators, the internal topology of the material preserving surface states are mirror sym-

metry, reflection symmetry, and rotational symmetry [10–13]. Additionally, there may be more than one symmetry types,

some crystals have a group of symmetries depending on the crystal structure. It is important to note that these symmetries

are dependent on the specific crystal lattice structure. In this paper, we are interested in SnTe crystal which is a topological

crystalline insulator. The nontrivial topology in these crystals relies on the presence of reflection symmetry of the Rock-

salt crystal structure with respect to the (110) mirror plane, and is mathematically characterized by an integer topological

invariant the mirror Chern number [11]. Many researches were conducted to control the phase in Topological Crystalline

Insulators TCIs via external factors such as temperature, symmetry breaking, strain, Rashba spin–orbit coupling, coupling

to a ferromagnet, and charged impurities [10, 12, 14].

SnTe exhibits a naturally inverted band ordering, where the valence band originates from the cation Sn atoms, and the

conduction band arises from Te atoms. This inversion, in contrast to a conventional ionic insulator, leads to the emergence

of TCI phase in SnTe. SnTe is predicted to possess topological surface states on a set of crystal surfaces. Topological sur-

face states on the (001) plane have been detected experimentally in angle-resolved photoemission spectroscopy (ARPES)

investigations conducted on SnTe. Moreover, the spin texture observed in spin-resolved ARPES experiments offers a

direct spectroscopic assessment of the mirror Chern number [11, 15].

On 2013, Yung Jui Wang, et al. conducted a first-principles calculations of the surface states in the CTI SnTe [5].

Timothy H. Hsieh et al. also showed that SnTe has metallic surface states with an even number of Dirac cones on high-

symmetry crystal surfaces such as (001), (110) and (111) [10, 16].

© Abdulhaq K., Elsaid M.K., Dahliah D., 2025
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By 2020, Researchers Pham, Binh, Viet, Dung, Hoi studied Rashba spin-orbit coupling (RSOC) effects on Dirac

fermions in SnTe [17]. RSOC alters dispersion, group velocity and effective mass of the surface state electrons [17].

Hsieh et al. investigate the influence of breaking the mirror symmetry via external elastic strain or in-plane magnetic

field [16]. On 2021, Ngo, Hieu, Lanh, Anh, and Hoi explored exchange field effects on the effective mass and the group

velocity in SnTe/ferromagnet heterostructures [14].

SnTe has the potential, due to its unique electronics and thermoelectric properties, to make significant contributions to

emerging technologies such as topological quantum computing and low power spintronics devices. Motivated by the noble

material properties of SnTe, our aims to examine theoretically the properties of 3D CTI [18]. We will consider the Hamil-

tonian of surface state electrons under strain and exchange effects, and calculate energy levels via matrix diagonalization.

The density of states will be computed using Green’s functions. In addition, dynamic properties, group velocity and

effective mass, will be investigated. The dynamic properties of the heterostructure of the topological SnTe/ferromagnetic

device have not been thoroughly investigated theoretically for spintronic devices. In this paper, we explore these properties

to assess the potential of SnTe.

The paper is organized as follows: In Section 2, we present theory. Section 3 shows results. Conclusion is presented

in Section 4.

2. Theory and modeling

The surface states of the SnTe (001) TCI and related alloys around the x1 point can be described by the following

effective Hamiltonian [8, 11, 18, 19]:

Ĥ1(k) = v1kxσy − v2kyσx + nτx + δσyτy +Mσz. (1)

Here, the first two terms represent the Dirac model, resulting in energy linearly dependent on k, similar to photons.

The third and fourth terms are to insure that the Hamiltonian of the (001) surface of SnTe must remain invariant under

reflection along the x-axis, reflection along the y-axis, time-reversal symmetry. The last term signifies a mass term, arising

from external factors like a ferromagnetic layer or an electric field. The values of the constants in this Hamiltoinan are

as follows: the Fermi velocity along x-axis given by ν1 = 1.3 eV·Å and that along the y-axis equals to ν2 = 2.4 eV·Å.

The two parameters n = 0.07 eV and δ = 0.026 eV represent intervalley scattering at the lattice scale to reproduce the

experimental observations [10, 18]. σ and τ are the Pauli matrices in spin and sublattice space.

The Hamiltonian in equation (1) can be diagonalized to find the energy levels:

E = µ

√
v12kx

2 + v22ky
2 + n2 + δ2 +M2 + 2v

√
(n2 + δ2)v12kx

2 + n2(v22ky
2 +M2) , (2)

where µ = ±1, v = ∓1.

The strain in the 2D materials induces a pseudo-magnetic field, which can be represented in the Hamiltonian as a

vector potential. This vector potential shifts the Dirac cones, allowing strain to control the position of the Dirac cones.

Here, the same effect is seen, but due to the existence of multi-valley massless Dirac fermions at low energy, which appear

as four Dirac points in the surface state (001). Each two of them have the same Hamiltonian because they are projected

to the same surface momenta in the Brillouin zone. Therefore, two vector potentials should be included, and from the

rotational symmetry between the Dirac points, knowing that the vector potentials are linearly proportional to strain field

uij , then general formula of vector potentials [20, 21]:

A1 = (α1Uxx + α2Uyy, α3Uxy), (3)

A2 = (α3Uxy, α1Uyy + α2Uxx). (4)

Here α1, α2 and α3 denote three independent constants. Knowing that the shear strain uxy is very small with respect to

Uxx and Uyy , Uxy can be ignored. The total vector potential can be written as:

A = (α1Uxx + α2Uyy, α1Uyy + α2Uxx). (5)

Then the shift in the momenta can be written as follows:

kx → kx + α1Uxx + α2Uyy, (6)

ky → ky + α1Uyy + α2Uxx. (7)

Under the influence of strain, the momentum will be shifted as expressed in Eqs. (6) and (7). Then, the energy

dispersion relation of the SnTe (001) surface state under the influence of strain becomes:

E = µ
√
v2
1
(kx + α1Uxx + α2Uyy)2 + v2

2
(ky + α1Uyy + α2Uxx)2 + n2 + δ2 +M2 + 2vh(k), (8)

where,

h(k) =

√
(n2 + δ2) v2

1
(kx + α1Uxx + α2Uyy)

2
+ n2

(
v2
2
(ky + α1Uyy + α2Uxx)

2
+M2

)
. (9)
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The obtained energy in Eq. (8) will be used to calculate the band structure. Following this, the dynamic properties

will be investigated, and the density of states using Green’s functions will be computed. Thermal and magnetic properties

will then be studied.

The partition function (Z =
∑

n

e−βEn ) is a fundamental and crucial quantity in statistical mechanics used to calcu-

late thermal and magnetic properties.

The average energy is the average of all possible state at certain temperature which is defined as 〈E〉 = −∂ ln(Z)
∂β

.

The average energy can be used to evaluate the magnetization, one of the most important magnetic properties, which

indicates the response of the material’s electrons’ spin to an external magnetic field. It is defined as: 〈M〉 = −∂ 〈E〉
∂B

.

Then, the magnetic susceptibility which classes the materials to diamagnetic (χ < 0) and paramagnetic (χ > 0), is defined

as: χ =
∂ 〈M〉
∂B

. It’s also important to study the thermal properties to assess its thermal applications, such as whether

the material acts as a thermal insulator or conductor, and whether it exhibits magnetocaloric properties. Magnetocaloric

materials can be used for heating or cooling by applying a magnetic field.

Entropy is a measure of the disorder or randomness in a system, which can be used to check the magnetocaloric

effect: 〈S〉 = ∂

∂T

(
1

β
ln (Z)

)
.

Dynamic properties such as group velocity vg=
1

~

−→∇kE(k) and effective massm∗=
~
2

∇2
kE(k)

are essential properties

for assessing the electronic applications of a material because the material’s mobility depends on them.

Density of state which is the number of states per unit energy can give a lot of information about the band structure,

Density of state mathematically is the delta function and it can be written in term of Green’s function. Starting from

the relationship between energy and wavefunction which is described by the Schrödinger equation Hψn = Enψn. The

density of states can be expressed as the Dirac delta function of the energy: D(E) =
∑

n

δ(E − En). The Green function

is given by the following formula: G =
1

E + iε−H
, where H is the Hamiltonian, E is the energy, and ε is very small

real number.

Let us multiply the Green function by |ψn〉 from the right, and 〈ψl | from the left and sum over all values of n and l.
This results in: ∑

n,l

〈ψl|ψn〉
1

E + iε−En

=
∑

n,l

δn,l
1

E + iε−En

=
∑

n

1

E + iε−En

.

It is obvious that only the diagonal elements of the G matrix have non-zero values. To obtain the density of states from

the Green function, let’s take the imaginary part of the Green function, as follows:

∑

n

Gn=
∑

n

1

E−En+iε

E−En−iε
E−En−iε

=
∑

n

E−En−iε
(E−En)

2
+ε2

, (10)

∑

n

Im(Gn) =
∑

n

− ε

(E−En)
2
+ε2

. (11)

The Dirac delta function can be written in terms of the Lorentzian function, and the result is as follows:

DOS(E) =
∑

n

δ(E−En) = lim
ε→0

− 1

π

∑

n

ε

(E−En)
2
+ε2

= − 1

π
lim
ε→0

∑

n

Im(Gn). (12)

3. Results and discussions

In this section, we will study in detail the effects of strain on the main properties of the electrons. It is obvious from

the strained Hamiltonian that the strain effect shifts the Dirac cone. Therefore, the strain effect can be utilized to control

the properties of the SnTe (001) surface state.

In Fig. 1(a, and b), we used the strained dispersion relation to display the variation of the electron velocity as function

of the strain. Fig. 1 represents the x-component of the group velocity of Dirac fermions at the Dirac point of momentum

(kx =
√
n2 + δ2/v1, ky = 0), both in the first and second conduction states. In Fig. 1(a), the x-component of the group

velocity is plotted as a function of Uxx. It is obvious that the x-component of group velocity changes with variations in

Uxx. In the first conduction state, when Uxx is negative (tensile strain), the x-component of group velocity is negative and

close to zero. However, with very small positive values of Uxx (compress strain), vx remains negative and then it changes

significantly and reach its minimum value as Uxx approaching
√
n2 + δ2/v1. Then, as Uxx increases vx converges to

small positive value which means that the electron wave is propagating along the positive x-direction. The observed

behavior can be attributed to the role of strain as an effective vector potential within a specific range of applied strain or

stress. In this regime, strain modifies the electronic band structure, leading to an increase in energy around the Dirac cone
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as a function of momentum. Consequently, the group velocity, which is defined as the gradient of energy with respect to

crystal momentum, aligns with the direction of the crystal momentum itself. This results in a conventional electron-like

behavior, where charge carriers exhibit positive effective mass characteristics.

FIG. 1. x-component group velocity of Dirac fermions on SnTe (001) surface state with momentum

(
√
n2 + δ2/v1, 0) as a function of strain: (a) Uyy = −0.04; (b) Uxx = 0.04

However, if the applied strain or tensile deformation induces a shift in the Dirac point such that the crystal momentum

is oriented opposite to the group velocity, the charge carriers within this regime will exhibit hole-like behavior. This

phenomenon arises due to the band structure modification, where the energy-momentum dispersion relation is altered,

effectively inverting the sign of the charge carrier velocity. In such cases, electrons in these regions behave similarly to

holes, meaning they move as if they possess a positive charge within the material’s electronic structure.

In the second conduction state when Uxx is negative/positive (tensile/compress strain), the x-component of group

velocity converges to the same value as of the first conduction state. The only difference that around Uxx =
√
n2+δ2/v1.

The group velocity changes drastically to reach its positive maximum.

Fig 1(b) represents the x-component of group velocity of Dirac fermions that have (
√
n2 + δ2/v1, 0) momentum in

the SnTe (001) surface state in the first and second conduction states as a function with Uyy , when Uyy is negative, both

fermions in the first and second conduction states have a negative group velocity, and the value of the x-component of

the group velocity of fermions in the first conduction state is greater than the x-component of the group velocity in the

second conduction state. Near Uyy = −0.05 (i.e when Uyy = −
√
n2+δ2/v1) the group velocities in the first and second

conduction states reach zero.

Uyy continues to increase, the x-component of the group velocity in both the first and second conduction states flips

to positive values. At this critical value of Uyy , the wave propagation is switching from negative x-direction to positive

one. Furthermore, the velocity becomes greater in the second conduction state. and as Uyy gets larger and larger the

velocity in both bands converges to v1.

Due to the importance of saddle points, the group velocity in the y-direction of the Dirac fermions at the saddle point

is studied as a function of strain. Fig. 2 demonstrates the y-component of the group velocity as a function of strain tensor

components. At the saddle points, there are no Dirac points in the y-direction, but the strain components affect the group

velocity at the saddle point. If the strain is included as a vector potential, it shifts the Dirac points, affecting the entire band

structure (breaking inversion symmetry). As a result, the energy, as a function of crystal momentum, changes. Within

a certain range of strain, the energy increases as a function of crystal momentum, leading to a positive group velocity.

Conversely, within another range of energy, the group velocity decreases as a function of crystal momentum, resulting

in a negative group velocity. Notice, if Uyy < −0.123, the y-component of the group velocity of the Dirac fermions in

both the first and second conduction states is negative (the energy decrease as a function of crystal momentum), and the

fermions in the second conduction state have a greater group velocity. At Uyy = 0.0123, the group velocity of fermions in

both states vanishes. If Uyy > 0.0123 the y-component of the group velocity of fermions in both states becomes positive

(the energy increases as a function of crystal momentum).

Figure 2(b) represents the y-component of the group velocity of the Dirac fermions, at the saddle point in the first

and second conduction states, as a function of Uyy . The y-component of the group velocity in both conduction states is

positive, fermions in the second conduction state have greater y-component group velocity when Uyy < −0.047. For

−0.047 < Uyy < 0.029, fermions in the first conduction state have a greater y-component group velocity, while for

Uyy > 0.029, fermions in the second conduction state have a greater y-component group velocity

As has been mentioned earlier, the strain effect shifts the Dirac cone, which can be used to tune the properties of

the surface state Dirac fermions in SnTe (001). One of the most important parameters for understanding the behavior of

fermions is effective mass. Effective mass (which is the mass of electrons in the crystal) is the dynamical quantity which
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FIG. 2. y-component group velocity of Dirac fermions on SnTe (001) surface state that have (0, n/v2)
momentum as a function of strain: (a) Uyy= −0.04; (b) Uxx = 0.04

is equal the reciprocal of the second derivative of the energy with respect to the crystal momentum. Fig. 3 represents

the reciprocal of the effective mass in the x-direction for electrons in the conduction band as a function of strain tensor

components at the Dirac point. The sign of the effective mass is determined by the curvature of the energy spectrum. In

the first conduction state, the electrons are highly massive and behave like electrons due to the positive sign of the effective

mass for Uxx < −0.015. However, when the energy is concave down the sign of the effective mass is negative as the

first conduction band in Fig. 3(a), and the electrons behave like holes (they move in opposite direction to field lines in an

electric field). In the range of −0.015 < Uxx < 0.031, the sign of the effective mass is negative, due to the downward

concavity in the band curve in this region. So electrons behave like holes. Within this range of strain, the effective mass

reaches two minimum values: one at Uxx = 0.0063 which is the absolute minimum and the other one at Uxx = 0.011.

When Uxx > 0.031 the sign of the effective mass becomes positive again, and electrons behave like electrons, exhibiting

high mass.

FIG. 3. Reciprocal effective mass in x-direction of the Dirac fermions on SnTe (001) surface state that

have (

√
n2 + δ2

v1
, 0) momentum as a function of strain: (a) Uyy= −0.04, (b) Uxx = 0.04

In the second conduction state, the sign of the effective mass of Dirac fermions is positive for the strain range

of−0.1 < Uxx<0.1, indicating that electrons behave normally. However, in the range Uxx< − 0.015 and Uxx > 0.011,

the electrons exhibit high effective mass. The effective mass reaches its minimum values in the range of −0.015 <
Uxx<0.011 with one minimum at Uxx = 0.0063 which is the absolute minimum and the other one is at Uxx = 0.011.

Figure 3(b) represents the reciprocal effective mass in x-direction of Dirac fermions with
√
n2 + δ2/v1, 0) momen-

tum as a function of Uyy , at Uxx = 0.04 in the first and second conduction states, in both states the sign of effective mass

is positive so the electrons behave normally in these states.

WhenUyy<−0.56, the effective mass in y-direction in the first conduction state decreases until it reaches its minimum

value at Uyy= −0.56. when Uyy>− 0.56 the effective mass increases.

In the second conduction state, the effective mass decreases when Uyy< − 0.084, at this point the effective mass

reaches an absolute minimum, for −0.084 < Uyy<− 0.054, the effective mass increases. For −0.054 < Uyy<− 0.0295,
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the effective mass decreases again and reaches second minimum value at Uyy = −0.0295. When Uyy > −0.0295, the

effective mass increases once more.

Figure 4(a and b) shows the effective mass in the y-direction at the saddle point as a function of the strain tensor

components. The effective mass for both the first and second conduction states is positive, indicating that the energy

states are concave up as a function of crystal momentum, and the electrons behave normally. In the first conduction state,

the effective mass reaches an absolute minimum at Uxx= −0.012, and there is another minimum value of the effective

mass at Uxx= 0. In the second conduction state, there is a minimum value at Uxx= −0.011. The effective mass can

be negative only in the x-direction and for electrons in the first conduction state. This occurs because, in topological

insulators, the first energy state bends only between the two Dirac points in the first conduction state.

FIG. 4. Reciprocal effective mass in y-direction of the Dirac fermions on SnTe (001) surface state at

the saddle point as a function of strain: (a) Uyy= −0.04; (b) Uxx = 0.04

Figure 4(b) represents the effective mass in y-direction as a function of Uyy at Uxx= 0.04, in both the first and second

conduction states, the sign of the effective mass is positive, so the electrons behave like electrons.

In the first conduction state, the effective mass increases when Uyy<0.0019, at Uyy = 0.0019 the effective mass

reaches its maximum value. Then, when Uyy>0.0019 the effective mass decreases.

In the second conduction state, the effective mass of Dirac fermions exhibits the same behavior, but it reaches its

maximum value at Uyy = −0.0083. It’s worth noting that the effective mass in the first conduction state is greater than

that in the second conduction state when −0.05 < Uyy<0.028, However, the effective mass in the second conduction

state is greater when Uyy<− 0.05 and Uyy>0.028. In typical materials, the group velocity and the effective mass usually

have the same sign. However, this can change in the presence of strong structural inversion asymmetry, which can arise

due to spin-orbit interaction or strain, as in our case. By comparing our first four figures, we can identify regions where

the signs of the effective mass and the group velocity differ.

4. Density of state of the Dirac fermions in 3D SnTe (001) surface state under combined exchange and strain

effects

Density of stateD(E), which represents the number of states per unit energy, is a fundamental characteristics in solid

state physics and condensed matter. It is used to study the electronic structure and the carrier concentration, which, in

turn, determine the type of matter and its conductivity. Therefore, the density of state of the Dirac fermions in SnTe (001)

surface state will be explored in this section.

Figure 5 displays the density of states D(E) of the Dirac fermion surface states as a function of energy. Fig. 5(a)

represents the pristine SnTe density of states, which is zero at zero energy and has a maximum value at E = ±δ, known

as the Van Hove singularities. It is expected that the density of states has a maximum at E = ±δ due to these being the

energy values of the saddle points, and it has a local minimum at E = ±
√
n2 + δ2 located at K = 0.

Including the exchange effect (M 6= 0) which is a ferromagnetic substrate in our case, opens up an energy band

gap Eg . Within this band gap, the density of states effectively approaches zero, as illustrated in Fig. 5(b). It’s important

to note that, as the exchange effect increases, the band gap widens, consequently expanding the energy range associated

with zero density of states, the minimum point shift to the right. The density of state value at E = ±δ increases when

−0.056 < M < 0.056 and decreases when M < −0.056 and M > 0.056 as obvious in Fig. 6 which represent the

density of state as a function of exchange effect when E = ±δ.

Figures 5(c and d) represents the density of states as a function of energy under the effect of x-direction uniaxial

strain Uxx and y-direction uniaxial strain Uyy . The density of states at Van Hoove singularities decreases with strain,

indicating a decrease in the concavity of the bands in the y-direction. The Dirac points along the x-direction remain when

the strain is small, but as the strain becomes sufficiently strong, the Dirac points are destroyed and an energy gap opens in
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FIG. 5. Density of state of the Dirac fermions in SnTe (001) surface state as a function of energy: (a)

Pristine SnTe; (b) at different values ofM and zero strains; (c) at different values of uniaxial strain Uxx,

Uyy = 0 and M = 0; (d) at different values of uniaxial strain Uyy , Uxx = 0 and M = 0

FIG. 6. Density of state of the Dirac fermions of SnTe (001) surface state as a function of exchange

effect at E = ±δ
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the x-direction. This effect becomes evident when Uxx = 0.1. Additionally, the minimum, located at E = ±
√
n2 + δ2

and k = 0, disappears when the strain becomes large enough.

5. Thermal properties of Dirac fermions of SnTe (001) surface state

Due to the importance of the thermal properties in thermal applications such as heating or cooling and thermal

insulation, in this section, thermal properties such as heat capacity and entropy of the SnTe (001) surface state will be

discussed.

The heat capacity represents the first derivative of the average energy with respect to temperature. Fig. 7 shows the

heat capacity as a function of temperature, with Fig. 7(a) showing the heat capacity at different values of the exchange

effect. When M = 0, the Schottky anomaly point which corresponds to the peak in the heat capacity curve occurs at

451.52 K. When M changes to 0.02 and M = 0.04, the Schottky anomaly point shifts to the right; when M = 0.06 and

M = 0.08, it shifts to the left. Interestingly, when M = 0.1, the Schottky anomaly point shifts to the right again, as

evident in Table 1. The heat capacity decreases as M increases (for M = 0.02, 0.04, 0.06, and 0.08). As the exchange

effect increases, the heat capacity decreases. This occurs because the exchange effect opens an energy band gap, shifting

the conduction states to higher energies. At low temperatures, the available thermal energy (given by KBT ) is small,

making the higher-energy electronic states inaccessible.

FIG. 7. Heat capacity of the Dirac fermions of SnTe(01) surface state as a function of temperature (a)

at various values of exchange effect; (b) at different values of uniaxial strain in x-direction Uxx; (c) at

different values of uniaxial strain in y-direction Uyy

TABLE 1. Temperature of the Schottky anomaly point at different values of the exchange effect (M )

M 0 0.02 0.04 0.06 0.08 0.1

Temperature (K) 451.51 452.69 453.86 442.15 424.6 451.51

Figure 7(b and c) represents the heat capacity of the Dirac fermions at different values of uniaxial strain in x-direction

and in y-direction. It is found that in both cases the heat capacity decreases when increasing the strain and the Schottky

anomaly point shifts as indicated in Tables 2 and 3. This occurs because the strain increasing shifts the Dirac points to

higher values of crystal momentum, leading to a decrease in the density of states, as shown in Fig. 5(b and c). Since the

heat capacity is proportional to D(E), its value is reduced by decreasing of D(E).

TABLE 2. Temperature of the Schottky anomaly point at different values of uniaxial x-direction strain (Uxx)

Uxx 0 0.05 0.1

Temperature (K) 451.51 444.49 506.51

TABLE 3. Temperature of the Schottky anomaly point at different values of uniaxial y-direction strain (Uyy)

Uyy 0 0.05 0.1

Temperature (K) 451.51 484.28 504.17

Entropy is an important quantity in thermodynamics, predicting the direction of spontaneous processes, such as heat

transfer, chemical reactions, and phase changes. In statistical mechanics, it provides a bridge between the macroscopic
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properties and microscopic configurations of a system, because it can be defined as the number of microscopic configura-

tions consistent with a given macroscopic state of a system. Here the entropy of the Dirac fermions in SnTe (001) surface

state will be studied.

Figure 8 represents the entropy as a function of temperature at different values of the exchange effect (Fig. 8(a))

and uniaxial strain (Fig. 8(b,c)), all these effects have the same qualitative influence on the entropy of the system: they

decrease the entropy of the Dirac fermions. This occurs due to a decrease in the disordering of the system. Note that the

entropy decreases more significantly when the strain is applied in the x-direction as shown in Fig. 8(b), in contrast to the

y-direction as in Fig. 8(c).

FIG. 8. Entropy of the Dirac fermions in SnTe (001) surface state as a function of temperature: (a) at

different values of the exchange effect; (b) at different values of x-direction strain Uxx; (c) at different

values of y-direction strain Uyy

6. Magnetic properties of the Dirac fermions of 3D SnTe (001) surface state

Magnetic properties such as magnetization M and magnetic susceptibility X are important in applications such as

magnetic devices, sensors, detectors, and data storage. Magnetic susceptibility, which classifies materials into paramag-

netic (X > 0) and diamagnetic (X < 0) categories, will be calculated.

Figure 9 represents the magnetic susceptibility as a function of temperature at different exchange effects and various

uniaxial strain values. SnTe is a paramagnetic material since its magnetic susceptibility is greater than zero. However,

the magnetic susceptibility decreases with increasing exchange effect or uniaxial strain, yet it remains greater than zero.

Thus, SnTe remains paramagnetic under the influence of both the exchange effect and uniaxial strains. In Dirac materials,

the magnetic susceptibility is zero because two conduction bands are identical. It means that there are no single electrons.

However, in topological insulators, these identical states split into two spin-dependent states, leading to the presence

of single electrons, which results in a magnetic susceptibility greater than zero. As the exchange effect or strain tensor

components increase, the density of states decreases, reducing the number of single electrons and consequently decreasing

the magnetic susceptibility.

FIG. 9. Magnetic susceptibility of the Dirac fermions at SnTe (001) surface state as a function of

temperature at (a) different value of exchange effect; (b) different values of uniaxial strain in x-direction

Uxx; (c) different values of uniaxial strain in y-direction Uyy

7. Conclusion

This study has provided a comprehensive theoretical investigation into the electronic, thermal, and magnetic prop-

erties of topological insulators. By analyzing crystalline topological insulator SnTe, we have gained valuable insights

into the behavior of these materials under different conditions. Our analysis revealed significant alterations in electronic

properties due to the effects of exchange and strain. The examination of the group velocity, the effective mass, and the

density of states provided a detailed understanding of its electronic structure. Furthermore, our investigation into thermal
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and magnetic properties shed light on its potential applications in diverse fields, ranging from electronics to magnetism.

It’s obvious that the strain effect and the exchange effect can be used to control the properties of SnTe.
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ABSTRACT Carbon polyprismanes are 1D nanostructures that should be classified as diamond-like phases

because they (polyprismanes) also consist of the 4-coordinated carbon atoms. A carbon polyprismane con-

tains polygonal atomic rings arranged in layers along the common symmetry axis, at uniform distances from

each other. According to previous density functional theory based studies, carbon polyprismanes can exhibit

metallic conductivity, which is very unusual for diamond-like phases. In this paper, we present the sp3 tight-

binding model based calculations of the band structures for carbon polyprismanes of different diameters and

compare the obtained results with their analogs for a 2D square carbon lattice, which can be considered as the

limiting case of a carbon polyprismane of infinite diameter. Our results confirm that the sp3 tight-binding model

describes the electronic properties of carbon polyprismanes well, since we obtain their band structures over a

wide range of parameter values for the proposed model. We believe that such electronic transport characteris-

tics are an intrinsic topological feature of polyprismanes and should also occur in non-carbon polyprismanes.

KEYWORDS band structure, tight-binding model, polyprismane, carbon nanostructures
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1. Introduction

In recent years, carbon nanotubes (CNTs) have found increasingly diverse applications in nanotechnology, en-

gineering, and industry. CNTs are actively used in the fabrication of various electronic components such as ionic

diodes [1], electrodes [2], and field-effect transistors (FETs) [3–5]. Many of the modern advances in CNT-based elec-

tronics have evolved from devices employing a single CNT to implementations using aligned CNTs and even CNT thin

films, as demonstrated in [6]. Aligned CNT-based field-effect transistors have already been scaled down to sizes be-

low 10 nm, surpassing their silicon counterparts in terms of charge carrier mobility and the Fermi velocity [7]. More-

over, artificial synaptic thin-film transistors, fabricated on an ultrathin flexible substrate with semiconductor single-walled

CNTs (SWCNTs) exhibiting high charge carrier mobility, have proved useful for the development of neuromorphic elec-

tronic skin [8]. In addition, CNTs have helped researchers fabricate highly conductive polymer composites for rapid-

response electrical heaters [9] and even electroactive porous filters for water purification [10].

A notable feature of CNTs is that their carbon atoms are in an sp2-hybridized state and can form additional covalent

bonds. Consequently, CNTs tend to be quite sensitive to environmental contaminants (free radicals). Carbon polypris-

manes (CPPs), or C[n,m] prismanes – systems of regular atomic m-gons stacked in layers along a common symmetry

axis at uniform inter-layer distances (n is the number of such m-gons; see Fig. 1) – do not suffer from this disadvantage

because the atoms in such CPPs are in an sp3-hybridized state and cannot form any additional covalent bonds. CPPs also

have much smaller cross-sectional areas compared to SWCNTs. These two factors make C[n,m] prismanes particularly at-

tractive in certain high-tech applications requiring atomic-scale precision (e.g., in the fabrication of ultrathin nanoneedles

for biological applications or tips for atomic force microscopy [11]).

However, CPPs are not without their drawbacks, one of which is low thermal stability. Thus far, only the simplest

C[n,m] prismanes have been synthesized [12–14]. Nevertheless, we believe that even these CPPs can be very useful

in nanoelectronics. It is well known that scaling down FET contact lengths is challenging as it can degrade device

performance [15]. Some studies report significant deterioration of FETs at their contact lengths below 30 nm [16]. We

believe that even the simplest C[n,m] prismanes could be promising candidates for nanomaterials to help solve these

scaling issues.

In addition, computational modeling indicates that long (n ≥ 10 or even n → ∞ C[n,4], C[n,5], and C[n,6] pris-

manes are sufficiently stable [17, 18], and also predicts the feasibility of creating C[3,4] and C[4,4] prismanes [19]. Direct

molecular-dynamics simulations confirm the high kinetic stability of short C[2,6] and C[2,8] prismanes [20]. Density

functional theory (DFT) calculations have also been applied to study specific CPP-based electronic components, such as

Schottky nanodiodes [21].

© Kurakin V.A., Kobernik T.N., 2025
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(a) (b) (c) (d)

FIG. 1. Atomic structures of C[n,4] (a), C[n,5] (b), C[n,6] (c), and C[n,7] (d) prismanes

Many diamond-like phases are very robust and can withstand substantial mechanical loads, as demonstrated by atom-

istic modeling [22–24]. Some diamond-like phases have hardness values comparable to that of diamond [25]. Such

distinctive physical properties open a broad range of commercial applications for diamond-like phases. Furthermore, like

diamond, most diamond-like phases comprise fully sp3-bonded carbon atoms and often have sizable (> 3.0 eV) band

gaps (diamond’s band gap is about 5.45 eV [26]), i.e., they display dielectric behavior [27]. Although C[n,m] prismanes

are structural units of diamond-like phases, CPPs can exhibit metallic conductivity, which is highly unusual for sp3-

hybridized carbon materials. This has been shown via DFT-based studies [28,29]. Notably, analogous metallic properties

also appear in silicon and germanium (classical semiconductors) polyprismanes [30–32], suggesting that the electrical

transport characteristics of C[n,m] prismanes are driven by their topology rather than by carbon’s intrinsic nature.

The tight-binding model (TBM) is a relatively simple and intuitive approach to calculating the band structures of both

carbon [33, 34] and non-carbon [35–37] materials. In this paper, we understand the metallic conductivity of CPPs from

the sp3 tight-binding model (sp3-TBM).

2. Materials and methods

We applied the sp3-TBM to compute the band structures of sufficiently long C[n,m] prismanes (n → ∞,

m = 4, 5, 6, 7). The 2s, 2px, 2py , and 2pz orbitals of each carbon atom were used as the basis set for expressing

this model. The Bloch functions used in our proposed model can be described as follows:

|ψλ(k, ρ)〉 = − 1√
N0

N0∑

i=1

e−i(k·al)|φλ(ρ− al − τη)〉,

where the index λ runs over the 2s, 2px, 2py , and 2pz atomic orbitals, l is the number of CPP unit cell, al is the translation

vector of the l-th unit cell along the C[n,m] prismane symmetry axis, τη is the relative displacement of the η-th atom in

the unit cell of this CPP, k is the wave vector (directed along the CPP symmetry axis and lying in the 1st Brillouin zone),

N0 is the total number of CPP unit cells (N0 = n→ ∞), ρ is the electron radius-vector. The general form of the m×m

Hamiltonian sub-block for a long C[n,m] prismane in the basis set |φλ(ρ − al − τη)〉 is detailed in Table 1, where it is

assumed that the q-th atom is the nearest neighbor of the p-th atom, and the r-th atom is the nearest neighbor of the q-th

atom but not of the p-th atom.

TABLE 1. General form of the m×m Hamiltonian sub-block

Atom index p-th atom q-th atom r-th atom

p-th atom E −e−i(k·dp,q)Ep,q 0

q-th atom −e−i(k·dq,p)Eq,p E −e−i(k·dq,r)Eq,r

r-th atom 0 −e−i(k·dr,q)Er,q E

In Table 1, the elements E, Eq,p, Ep,q , Eq,r, and Er,q are 4 × 4 matrices describing the interaction energies of the

long C[n,m] prismane atoms with indices p, q, and r. The vector di,j represents the position of atom j of such a CPP

relative to its atom i. The matricesEq,p,Ep,q ,Eq,r, andEr,q were calculated according to the Slater–Koster approach (see

Table 2) [38]. We likewise computed the elements E, taking into account that each atom in the C[n,m] prismane (n→ ∞)

unit cell interacts with its 2 images in the nearest neighboring unit cells of this CPP. The matrices E also included the

energies of the s- and p-orbitals of carbon. Since we only considered the interactions of the nearest neighboring atoms of

CPPs, (p; r) and (r; p) blocks in Table 1 are 0.

In Table 2, L, M , and N are the direction cosines of di,j with respect to x-, y-, and z-axes, respectively. Throughout

this work, we assumed that all covalent bond-lengths in C[n,m] prismanes (n → ∞) are equal (∼ 1.50 – 1.60 Å),
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TABLE 2. Elements of the matrices Eq,p, Ep,q , Eq,r, and Er,q

Atomic orbitals 2s 2px 2py 2pz

2s tssσ Ltspσ Mtspσ Ntspσ

2px Ltspσ L2tppσ + (1− L2)tppπ LM(tppσ − tppπ) LN(tppσ − tppπ)

2py Mtspσ LM(tppσ − tppπ) M2tppσ + (1−M2)tppπ NM(tppσ − tppπ)

2pz Ntspσ LN(tppσ − tppπ) NM(tppσ − tppπ) N2tppσ + (1−N2)tppπ

as previous studies indicate that in long CPPs the difference between intra-layer and inter-layer bond-lengths does not

exceed 5 % [11]. Thus, our focus was on elucidating the electronic properties of long C[n,m] prismanes rather than on

fine details of their geometry. In explaining the electrical transport characteristics of such CPPs, we adopted the simplest

possible model.

All eigenvalue calculations of the Hamiltonians and the band structure plots were performed numerically using

Python.

3. Results and discussion

In the first phase of our study, we adopted the following parameter values for the sp3-TBM: E2s = −7.30,

E2p = 0.00, tssσ = −4.30, tspσ = 4.98, tppσ = 6.38, and tppπ = −2.66 eV, as indicated in [39–41].

Before calculating the band structures of C[n,m] prismanes (n → ∞, m = 4, 5, 6, 7) with these sp3-TBM parameter

values, we tested them by computing the band structures of long zigzag (χ, 0) SWCNTs. For χ = 6, 7, 8, 9 our results

qualitatively confirmed the well-known rule: if χ is a multiple of 3, then long (χ, 0) SWCNTs are quasi-metallic [42].

Fig. 2 shows the band structures of long (6, 0), (7, 0), (8, 0), and (9, 0) SWCNTs under the chosen parameter values for

the sp3-TBM. The corresponding band gaps of these SWCNTs are summarized in Table 3.

TABLE 3. Band gaps of long (χ, 0) SWCNTs

χ 6 7 8 9

Band gap, eV 0.08 1.14 1.11 0.08

We initially validated the above sp3-TBM parameter values on (χ, 0) SWCNTs because they are 1D systems (like

CPPs). In addition, the electric transport characteristics of such SWCNTs are fairly well understood. However, each

carbon atom in long SWCNTs has only three nearest neighbors. In long C[n,m] prismanes, each carbon atom is cova-

lently bonded to its four nearest neighbors. Therefore, we additionally tested the same sp3-TBM parameter values by

reproducing the electronic properties of diamond, which indeed demonstrated a distinct dielectric character under these

conditions.

Using the above parameter values for the sp3-TBM, we then calculated the band structures of long [n, 4], [n, 5], [n, 6],
and [n, 7] CPPs. Our results indicate that C[n,m] prismanes begin to exhibit metallic properties for m ≥ 5, whereas C[n,4]

prismanes display a pronounced dielectric character (n → ∞). These findings for long C[n,4] and C[n,m] prismanes with

m ≥ 7 are in qualitative agreement with the DFT-based calculations in [29]. Fig. 3 shows the band structures of long

C[n,4], C[n,5], C[n,6], and C[n,7] prismanes under the chosen parameter values for the sp3-TBM. The corresponding band

gaps of these CPPs are provided in Table 4.

TABLE 4. Band gaps of [n,m] CPPs at n→ ∞

m 4 5 6 7

Band gap, eV 5.48 0.00 0.00 0.00

The accuracy of both TBM- and DFT-based calculations depends on the choice of parameter values and other ap-

proximations [43–46]. Consequently, in the second phase of our work, we varied each of the sp3-TBM parameter values

by ±30 % of their respective initial values and evaluated the effect of these variations on the electronic properties of long

[n, 4], [n, 5], [n, 6], and [n, 7] CPPs. The band gaps of C[n,4] and C[n,m] prismanes with m ≥ 7 and n → ∞ proved to

be qualitatively stable under these changes. In contrast, the band gaps for long [n, 5] and [n, 6] CPPs ranged from 0.00 to

1.00 eV under the similar shifts of the parameter values for the sp3-TBM, indicating a quasi-metallic to semiconducting

behavior of such CPPs, in agreement with [29]. The persistence of the qualitative results for the band gaps of long C[n,4]
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(a) (b)

(c) (d)

FIG. 2. Band structures of long (6, 0) (a), (7, 0) (b), (8, 0) (c), and (9, 0) (d) SWCNTs

and C[n,m] prismanes (m ≥ 7) suggests that their electric transport characteristics are mainly due to the topology of these

CPPs and are not very sensitive to specific sp3-TBM parameter values. Table 5 compiles the resulting intervals of the

band gaps for long [n, 4], [n, 5], [n, 6], and [n, 7] CPPs under the above variations of sp3-TBM parameter values.

TABLE 5. Band gap intervals for long [n,m] CPPs under a variation of the sp3-TBM parameter values

(E2s, E2p, tssσ , tspσ , tppσ , tppπ)

m 4 5 6 7

Band gap intervals, eV 2.12 – 10.18 0.00 – 0.93 0.00 – 0.80 0.00 – 0.00

It is well known that the band gap of a long (χ, 0) SWCNT decreases with increasing its diameter, and such a SWCNT

itself herewith tends asymptotically towards graphene [42]. Similarly, a long C[n,m] prismane with very large diameter

(m → ∞) asymptotically approaches a hypothetical infinite 2D square carbon lattice (Fig. 4(a)). Although in a long

C[n,m] prismane the intra-layer atomic distances differ slightly from their inter-layer analogs, this discrepancy diminishes

for larger diameter of this CPP [11]. As the surface curvature of a long CPP approaches 0 and all its covalent bond-lengths

become equal, the structure of such a C[n,m] prismane essentially becomes to a hypothetical infinite 2D square carbon

lattice. Although this ideal lattice is likely to be unstable in practice, it is instructive to consider it as the limiting case of a

long CPP with a very large diameter. Fig. 4(b) shows the band structure of a hypothetical infinite 2D square carbon lattice

calculated with the above sp3-TBM parameter values. Varying these parameter values did not have a qualitative impact

on the outcome: for C[n,m] prismanes in the limits n → ∞ and m → ∞, the band gap remains zero, indicating robust

metallic conduction of the ideal carbon lattice.
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(a) (b)

(c) (d)

FIG. 3. Band structures of [n, 4] (a), [n, 5] (b), [n, 6] (c), and [n, 7] (d) CPPs at n→ ∞

(a) (b)

FIG. 4. A hypothetical infinite 2D square carbon lattice (a) and its band structure (b)
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4. Conclusion

In this paper, we applied the sp3-TBM to study the electronic properties of long C[n,4], C[n,5], C[n,6], and C[n,7]

prismanes. Our findings show that C[n,4] prismanes (n→ ∞) feature relatively wide (∼ 2 – 10 eV) band gaps and can be

classified as semiconductors or dielectrics. Meanwhile, long C[n,m] prismanes with m ≥ 7 (including m → ∞) possess

no band gap at all, thus acting as good electrical conductors. Large variations in the sp3-TBM parameter values do not

qualitative effect on these results. We also found that long [n, 5] and [n, 6] CPPs can exhibit metallic, quasi-metallic, or

semiconductor properties depending on the choice of these parameter values. Therefore, the electronic features of C[n,4]

and C[n,m] prismanes at m ≥ 7 and n → ∞ are governed primarily by their topology rather than by the specific nature

of carbon. We predict that similar behavior will occur in polyprismanes of other chemical elements (e.g., silicon and

germanium). The demonstrated electronic transport properties of CPPs open fresh avenues for exploiting these carbon

nanostructures as sub-nanometer wires and in other nanoelectronic device components.
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1. Introduction

For a significant part of the 20th century, classical semiconductors (silicon and germanium) dominated in semicon-

ductor technologies. But gradually, alternative materials for using in electronics were sought, and by the beginning of the

21st century, there was noticeable progress in this area, especially after the “nanostructure boom” that broke out at the

turn of the century. Indeed, nanometer-scale objects, according to many experts, have been called the most in-demand

over the past decades in various fields of science and technology, including electronics.

Nanoelectronics includes technologies that use electronic devices with structural working areas of nanometer sizes [1,

2]. These include emission devices, various types of nanoantennas, semiconductor lasers, field and bipolar transistors with

characteristic element sizes of approximately 100 nm, nanoscale electromechanical systems, etc. When reducing the size

of electronic devices, it is necessary to take into account qualitatively new effects associated with the discreteness of the

electric charge and the quantum-wave nature of electrons. Therefore, single-electron devices with discrete tunneling, as

well as quantum dots, are also an important component of nanoelectronics.

For decades, progress in electronics has been accompanied by a reduction in the size of individual elements and an

increase in their number on a chip. In turn, this has increased energy consumption and the amount of heat generated

(the problem of heat removal still remains one of the most difficult in electronics). Therefore, increasingly complex

technological problems emerged with the transition to more miniature technological processes. The growing problems

led to the emergence of questions: are there limits to such miniaturization, will the Moore effect of increasing the number

of elements in microelectronic circuits be observed in the future? Despite the fact that commercial production of chips

using the 2 nm process technology is expected in 2025, there is an assumption that developments in the field of electronics

will no longer obey this law in the future and silicon, as a material will approach the physically insurmountable limit of

miniaturization of about 10 Å.

It is known that carbon is one of the most amazing chemical elements, forming a wide variety of structures and

allotropic forms and possessing a variety of properties (often radically opposite) [3, 4]. In addition to the well-known

graphite and diamond, the researchers are focused on the recently discovered fullerenes, carbon nanotubes (CNT), and

graphene, the discovery of which gave a new impetus to the creation of specialized electronics. In fact, carbon nanos-

tructures, due to their size, are a kind of transition bridge between individual molecules and crystalline formations and,

accordingly, a very promising material for the elemental base of modern nanoelectronics, allowing a significant increase

in the density of transistors in integrated circuits.

Therefore, there is currently an active discussion in the scientific community about the possibility of practical ap-

plication of various carbon nanostructures in microelectronics as working elements of field-effect transistors, memory

cells, integrated circuits, as well as in the creation of quantum computers and, in general, in the design of various promis-

ing composite materials. It is nanoelectronics that is one of the most attractive areas of use of carbon nanostructures

(graphene, graphane, nanotubes and other similar structures) [5,6] due to their small size, the most diverse (often unique)

electrical and optical properties, superior mechanical strength and chemical stability. Each of these nanostructures has its

own individual properties and prospects for application in nanoelectronics.

As mentioned above, today the obvious exhaustibility of silicon as a base for a semiconductor platform is already a

practically indisputable fact, and more exotic gallium arsenide and diamond, despite the great hopes that were placed on
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them, have not become widely used materials in industrial electronics [7]. The nanostructured carbon materials (possess-

ing many forms and modifications) are the potential alternative to classical semiconductors, namely as a fundamentally

new component base for electronics, judging by the results of the latest research.

Some time ago researchers are already talking about completely “carbon” electronics [8,9] in the near future, which,

due to the combination of its unique properties, can become a replacement for “silicon” electronics. However, in our

opinion, even at that time such a conclusion was somewhat premature.

Of course, today the contribution of carbon materials to the development of micro- and nanoelectronics is signifi-

cant, especially, the contribution of carbon nanotubes, since they were obtained quite a long time ago, have been better

studied [10] and many of their applications in electronics are already known. Developments related to fullerenes, and

especially graphene, are still much fewer, but in general, graphene is a more promising material than CNTs. This is

explained by the relative simplicity of the planar integrated circuits production, using planar graphene layers. No specific

equipment is required for this, and it is enough to use already well-established nanolithography techniques for the mass

production of new electronic devices.

In this article, we will consider only some areas of carbon nanostructured materials using in electronic engineering

today, assess the prospects for the development of carbon electronics and applications in the widest areas of modern

science and technology.

2. Electronics of fullerenes

Fullerenes, discovered in 1985, are an amazing class of carbon molecules with unique structural and electronic prop-

erties, are self-organizing structures, and are the third allotropic modification of carbon, in addition to the already known

diamond and graphite structures. These are closed spherical carbon molecules consisting of pentagons and hexagons.

Fullerenes containing from 28 to 100 carbon atoms have been discovered, but the most stable molecules are C60 and C70.

The best-known fullerene is C60. It consists of 60 carbon atoms arranged in the form of a ball, similar to a football. Each

carbon atom is connected to three neighboring carbon atoms, forming hexagons and pentagons.

Fullerenes have a wide range of properties which makes them the subject of considerable scientific interest and

practical application. For example, studies have shown that fullerene is an organic semiconductor with a band gap

of ∼ 1.5 – 2 eV and exhibits strong acceptor properties with respect to most organic compounds. Fullerene can be

used in artificial photosynthesis systems and organic solar cells based on high-molecular bulk heterojunctions, as a part of

donor-acceptor complexes [11]. Field-effect transistors with a fairly high carrier mobility have already been created based

on single-layer fullerene films. Due to the mobile π-electron system, the fullerene molecule is easily polarized and has

nonlinear optical properties. Fullerenes also have interesting photochemical properties, including the ability to absorb and

emit light. This makes them interesting for such areas of application as photovoltaic cells and optoelectronic devices. A

solar cell is a device that converts solar radiation into electrical current, and fullerene plays an important role in increasing

the overall efficiency of such a cell. Fullerenes short photoresponse time is the advantage of fullerene solar cells over

traditional silicon. In addition, fullerenes are already used as components of molecular electromechanical transistors,

single-electron transistors, Kondo effect elements, and much more.

In most organic materials, especially those used to create electronic devices, hole conductivity predominates over

electron conductivity. One of the promising devices for organic electronics is an organic field-effect transistor (OFET)

with a transport layer no more than ten nanometers thick, in which the flow of charge carriers is controlled by changing

the charge density in an electric field.

Multilayer transistors have been created in which the semiconductor (fullerene C60) and the light-controlled com-

pound (spiropyran SpOx) form separate layers (see Fig. 1) [12, 13]. A study of the current-voltage characteristics of

the obtained transistors showed that the currents in the phototransistors are less than 1 nA in the absence of irradiation.

The current between the source and drain increases by three orders of magnitude when irradiated with ultraviolet light

(350 nm) in the transistor gap area, i.e. the ratio of the on-off currents is about 1000.

Also physical principles have been developed for creating a transistor analogue on a single fullerene molecule, which

can work as a current amplifier in the nanoampere range [14]. Two gold point contacts on a silicon oxide substrate

are the source and drain, respectively, between which a C60 molecule is located. The third electrode, which is a small

piezoelectric crystal, is brought to the van der Waals distance opposite the C60 molecule (like a gate opposite the channel

in a MOSFET transistor). The input signal is fed to the tip of the piezoelectric element, which deforms the C60 molecule

located between the electrodes and modulates the conductivity of the intramolecular junction. The transparency of the

molecular current flow channel depends on the degree of blurring of the metal wave functions in the region of the fullerene

molecule. A simple model of this transistor effect is a tunnel barrier, the height of which is modulated independently of

its width, i.e. the C60 molecule is used as a natural tunnel barrier. The supposed advantages of such an element are its

small size and very short electron transit time in the tunnel mode, and, consequently, higher response speed of the active

element.

The use of a fullerene molecule as a ready-made nano-sized object for creating nanoelectronic devices and devices

based on new physical principles is very promising. For example, fullerene molecules can be used to create memory

devices. It is proposed to place them on the surface of a substrate in a specially specified way using a scanning tunnel or
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FIG. 1. Photocontrolled organic field-effect transistor [12]

atomic force microscope, and use this as a way to record information. To read information, the surface is scanned by the

same probe. In this case, one bit of information is the presence or absence of a molecule with a diameter of 0.7 nm, which

allows achieving record values of information recording density. Such experiments were conducted by Bell company.

Researchers from Cornell University have proposed a concept for non-volatile solid-state computer memory based

on silicon dioxide and fullerene C60. The memory cell in the proposed version is one C60 molecule (buckyball). The

energy levels of such a molecule allow for charge tunneling, which enables data recording and deletion. The advantage

of the new development is that buckyballs are relatively easily and evenly distributed in silicon, as they are not prone to

aggregation and cluster formation.

The use of C60 molecules, according to the developers, makes it possible to increase the ratio of recording retention

time to recording/erasing time by an order of magnitude compared to memory based on metal nanocrystals.

In the field of nanoelectronics, quantum dots are of the greatest interest in terms of possible applications. Such dots

have a number of unique optical properties that allow them to be used, for example, to control fiber optic communications,

or as processor elements in the optical supercomputer currently being designed. Fullerenes are ideal quantum dots in many

respects, and, accordingly, have a chance to become the smallest microcircuit in a computer nanoprocessor.

3. Electronics of CNTs

The discovery of carbon nanotubes in 1991 [15] practically led to the emergence of a new field of solid-state physics,

since CNTs (which combine the properties of both individual molecules and a solid) generally represent a unique inter-

mediate state of matter.

It is known that carbon nanotubes can serve as excellent conductors in electronic integrated circuits, since they have

good contact with metals widely used in modern microelectronics – platinum, gold, titanium, and are capable of con-

ducting currents without noticeable heating, three to four orders of magnitude higher than conventional metal conductors.

Carbon nanotubes can switch currents with a density of up to 108 – 109 A/cm2 (up to 1010 A/cm2 for multi-walled CNTs)

due to the low defect concentration. At the same time, a copper conductor is destroyed due to heat release already at

current densities of ∼ 10
6 A/cm2.

The current demand for carbon nanotubes is driven by the growing desire to miniaturize semiconductor compo-

nents [16]. Nanotubes, with their superior mechanical strength and chemical stability, small size and conductivity con-

trolled by synthesis, are considered a desirable material for the production of working elements in microelectronics.

Materials containing CNTs are already being used by companies producing semiconductor components due to their ex-

ceptional electrical characteristics, combining both metallic and semiconductor properties. Let us consider some realistic

examples of the use of carbon nanotubes in electronics.

3.1. CNT transistors

The first field-effect transistors on carbon nanotubes were obtained at the end of the 20th century, and the technology

of their production continues to improve [17–20]. It is possible to achieve a higher response speed of the transistor

junction when using carbon nanotubes with semiconductor properties in transistors, and, accordingly, operation at higher

frequencies, due to the higher electron mobility than in classical semiconductors. In addition, for CNT transistors there

is no miniaturization limit of tens nanometers, typical for silicon semiconductor devices, i.e. today they already have

dimensions an order of magnitude smaller than silicon ones.
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The approximate structure of a CNT-based field-effect transistor is shown in Fig. 2. Carbon nanotubes with semi-

conductor properties (channel) are placed between two metal electrodes (source and drain) deposited on a silicon wafer,

which is the gate of the device. If there is no voltage on the gate, the transistor channel (nanotube) is closed, since there

is a barrier in the forbidden zone of the semiconductor nanotube. If voltage is applied to the gate, the electric field causes

the channel band diagram to rearrange and conductivity to appear in it. Consequently, it is possible to control conductivity

(open or close the transistor junction) by changing the voltage applied to the gate.

FIG. 2. Structure of a CNT field-effect transistor

There are also Y-shaped CNT transistors, first proposed by researchers at the University of California, San Diego

and Clemson University (USA). Their construction is fundamentally different from the construction of the field-effect

transistor discussed above, but it has electronic properties similar to those of traditional metal-oxide MOSFETs used to

produce computer microprocessors, RAM, and other integrated circuits.

These transistors were obtained using a special technique of branching conventional carbon nanotubes during growth,

with the addition of an iron-titanium catalyst, the particles of which stimulated the branching of the growing nanotube.

The result was Y-shaped nanotubes with metal particles at the junction of the trunk and branches (see Fig. 3(a)). When

such a structure is connected to a source of electric current, it becomes possible to control the electrons entering one of

the branches by switching them through a metal nanoparticle at the junction (as in a conventional MOSFET transistor, see

Fig. 3(b)). The metal particle of the catalyst either passes or does not pass current from one branch to another (drain –

source), depending on the potential applied to the main trunk of the nanotube (gate).

FIG. 3. SEM image (a) and schematic diagram (b) of a transistor built on a Y-shaped carbon nanotube

3.2. CNT memory devices

The use of CNTs makes it possible to develop various versions of computer flash memory, with the possibility of a

noticeable increase in capacity per unit area due to the small size of the nanotubes [21, 22]. Fig. 4 shows a memory cell

on a CNT transistor with a cantilever. The cell is assembled on a field-effect transistor located on a silicon plate (1) with

a source (2), drain (3), channel-tube (7) and a “floating” gate (4). An electric charge is supplied to the gate through an

electrode (6) and a metal cantilever (5), which, by default, has no contact with the gate. But if a potential is supplied to

the control electrode (8) during the recording process, electrostatic forces bend the cantilever, and it contacts the gate. As

a result, an electric charge flows to it, which is equivalent to recording a logical unit. Even if the potential on the control

electrode disappears, the charge on the insulated gate is retained for a long time, i.e. such memory is non-volatile. The

power consumption of this type of memory during operation can be significantly lower than that of classic flash memory,

since the cantilever switches under the influence of electrostatics with minimal heat dissipation.

Modification variants of such memory cells by selection of dielectric materials for gate insulation (silicon oxide,

hafnium oxide, etc.) allow one to reduce the time of information reading/writing cycle to hundreds of nanoseconds, which

in principle is not the final value for the productivity and speed of this memory type. And the high memory speed can

contribute to the use of such cells not only as non-volatile flash memory, but also as high-speed RAM.
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FIG. 4. Design of an elementary cell of flash memory on CNTs [1]: 1 – silicon wafer, 2 – source, 3 –

drain, 4 – “floating” gate, 5 – metal cantilever, 6 – electrode, 7 – channel- tube, 8 – control electrode

3.3. CNT displays

Carbon nanotubes are used to produce various types of displays now: as a field emitter in field emission display (FED),

a transparent electrode in organic light-emitting devices (OLED), a polarizer in liquid crystal displays (LCD). The use

of CNTs in displays is primarily associated with FED technology, developed and introduced by LETI company in 1991.

FED displays were supposed to use a matrix of “cold” cathodes. But the first FED displays turned out to be uncompetitive

due to the high percentage of defects and the reduction in cost of competing display production technologies.

But this technology came back to life in the early 21st century, when FED displays were developed that proposed

using CNT arrays as cathodes [23], which significantly reduced the cost of FED display production. Large-area field

emission displays were manufactured using single-layer carbon nanotube emitters. Triode-type field emission display

structures were also studied to achieve ultra-high brightness. In this form, carbon nanotube FED displays can compete

equally with large-diagonal panels, and they will also compete with plasma panels in the future, which currently dominate

the field of ultra-large screen diagonals.

Single-walled carbon nanotubes can also be used as electrodes in OLED displays based on organic light-emitting

diodes and light-emitting transistors [17, 24] operating at low voltage, with low power dissipation and high luminosity

in three primary colors. Such OLED displays can be extremely flexible and transparent due to the high strength of

the nanotubes and the ultra-thin thickness of the electrode matrix, which will allow the creation of sheets of very thin

electronic paper. In general, the main trend of the world market in recent years has been the growth in demand for touch

screens. Therefore, the development of flexible electronics is one of the main technologies that will only gain momentum

in the coming years [25]. It is necessary that the material used to create a flexible display have the ability to deform when

pressure is applied. CNTs are such a promising material, suitable for the production of flexible electronics.

The development of a low-temperature method for producing carbon nanotubes, which would allow them to be

applied to substrates made of various materials (for example, not to damage the glass substrate used in the final device)

was one of the important tasks facing researchers working in this area. This problem has now been solved, particularly, in

the works of employees of the Donetsk Institute for Physics and Engineering (DonIPE) [26, 27], which made it possible

to obtain arrays of carbon and carbon-nitrogen nanotubes on glass substrates.

3.4. CNT integrated circuits

After the creation of the field-effect transistor on nanotubes, periodic reports appear on the development of electronic

devices consisting of a relatively large number of transistors and other elements of circuitry implemented using CNTs. As

an example, we can point to elements that perform logical functions, high-frequency pulse generators, electromagnetic

wave detectors, and even microprocessors [28–30].

It is necessary to form hundreds and thousands of transistors in a crystal to achieve more complex functionality

of integrated circuits. Back in 2013, Stanford University scientists created a simple processor of only 178 transistors

(modern silicon processors contain billions of transistors) on carbon nanotubes [28]. Its performance was low, it operated

at a frequency of 1 kHz and had extremely limited capabilities. But microelectronics on a silicon platform also went

through this path, so this important result can be considered as the first milestone in the development of all-carbon

electronics. Already in 2019, a fully functional 16-bit microprocessor with more than 14,000 CNT transistors on the

RISC-V architecture was presented [29], which could execute the 32-bit set of commands.

To sum up, despite significant efforts in the field of applied research on carbon nanotubes, they have not yet led to

any radical breakthrough in the development of modern nanoelectronics over the past few decades. The unique properties

of CNTs as working elements of nanoelectronic devices have not yet been fully implemented, and their combination with

existing silicon technologies raises many questions.
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4. Electronics of graphene

The discovery of graphene and initial studies of its unique properties give hope that an alternative material that can

become the basis for the creation of future universal electronic nanotechnologies has been found, and carbon nanotubes

are only the first step in the development of carbon nanoelectronics. Over the past few years, graphene-based electronics

have been the subject of hot discussions. It is assumed that graphene sheets of a sufficiently large area will allow the

formation of electronic elements using long-known methods of modern microelectronics, such as thin-film technology,

various types of nanolithography and carbon particle printing, which will make it possible to implement the density of

electronic elements required today and in the future.

Graphene was discovered in 2004 by Russian-born scientists Konstantin Novoselov and Andre Geim [31]. Graphene

is a layer of carbon atoms in a hexagonal two-dimensional lattice, and, in fact, it is a one atom thick carbon film with a

strictly ordered crystalline structure. Its disadvantages include the absence of a forbidden zone in unmodified graphene,

as well as the difficulty of obtaining large homogeneous sheets of such material. A great advantage of graphene is that

it can work as a single base material for both nanoelectronics and nanooptics [32], and can be combined in different

combinations with elements of optoelectronic circuits, which is very convenient.

It turned out that graphene has many interesting properties, including high stability, high thermal and electrical

conductivity (including at room temperature). The mobility of electrons in graphene is 10 – 20 times higher than in

classical silicon semiconductors, and, therefore, such a material is promising for creating electronic circuits suitable for

operation at terahertz frequencies [33] (as well as the CNT devices discussed above). Conventional planar technologies

tested in microelectronics for many decades are applicable to graphene and this is the advantage of graphene over carbon

nanotubes. In addition, the control current of the electronic devices used graphene can be proportionally increased by

changing the width of the conductive channel, due to the two-dimensional structure of the material. Let us consider

practical examples of using graphene in modern electronics.

4.1. Graphene transistors

Today, the main applied electronic application of graphene is in the field of analog electronics, since the problem of

forming its energy gap has not yet been finally solved. The main advantage of electronic devices designed on graphene

basis is their high performance, due to the record value of charge carrier mobility in graphene. Therefore, graphene

attracted much attention immediately after its discovery as a material for creating field-effect transistors [34, 35] and

research in this direction continues [36]. The first experimental field-effect transistor on graphene was obtained in the same

2004, on a doped silicon substrate (gate), covered with a layer of silicon oxide (gate dielectric) hundreds of nanometers

thick. The simplicity of the design had its drawbacks in the form of parasitic capacitance formed by the conductive silicon

substrate, so the applicability of such a transistor in radio-frequency circuits is very problematic. But a start had been

made and the prospects of the newly discovered material have been demonstrated in practice.

It is necessary to reduce both the thickness of the gate dielectric and the width of the graphene channel as much as

possible to improve the electrical and frequency characteristics of field-effect transistors. The high permittivity group

dielectrics is desirable to use instead of the silicon oxide used in the first trial transistor model. The design of a graphene

field-effect transistor with a gate dielectric made of Al2O3 (the layer thickness is a few nanometers, which is a few orders

of magnitude lower than the thickness of the previously used SiO2) is shown in Fig. 5.

FIG. 5. Structure of a field-effect transistor on graphene [1]

As mentioned above, the lack of a closed state in graphene transistors is an obstacle to the use of such devices

in digital circuits due to the inaccessibility of the forbidden zone in graphene. Under normal conditions, a graphene

field-effect transistor does not close completely, therefore, devices using such circuitry are not energy efficient enough.

However, there are modifications of graphene transistor designs where the current exponentially depends on the gate
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voltage [35]. Such a device is distinguished by a low closed-state current, typical for conventional semiconductor field-

effect transistors, and a high open-state current, typical for graphene. Analog electronics do not require a forbidden zone,

so many analog radio-frequency devices are already built on graphene transistors. From year to year, the size of such

devices is decreasing, and their operating frequency is increasing. Graphene transistors with a length of 600 nm and an

operating frequency of up to 34 GHz, then 150 nm and a frequency of 26 GHz, 240 nm and 100 GHz, and so on, up to

400 GHz, have been consistently reported. Therefore, even experimental field-effect transistors on graphene are already

comparable in frequency to the best semiconductor electronics of III-V group compounds, and have significantly outpaced

their silicon counterparts.

4.2. Graphene memory devices

Similarly to CNT, graphene, with its unusual properties, is promising for building various types of memory [37–39],

including high-performance non-volatile memory. Graphene is able to capture a significantly larger charge and, thus, is

promising as a material for the field-effect transistor electrode in the cell for building memory.

The prototype of the new memory, proposed at Rice University (USA) under the supervision of Prof. James Tour,

consists of silicon modules with a dozen atomic layers of graphene, no more than 5 nm thick (see Fig. 6). Accordingly,

this affects the size of the memory cell, which is at least an order of magnitude smaller than the cells of modern NAND

memory. This will allow a multiple increase in the capacity of memory modules without deteriorating its performance

and reliability – tests confirm a large number of memory cell rewriting cycles. Graphene-based memory also is capable

of operating in a wide range of temperatures, which makes it possible to function with poor heat dissipation or even the

absence of cooling and ventilation. Perhaps, the most interesting property of graphene memory is its low sensitivity to the

destructive effects of penetrating radiation, which allows such memory to be used in extreme conditions.

FIG. 6. Flash memory cell based on graphene layers [37]

One of the lacks of the proposed graphene memory is the access time, which is still several times longer than the

characteristic response time of modern memory devices, but there is no doubt that further improvement of the proposed

prototype will solve this problem. Moreover, Professor J. Tour’s group continues to actively work towards improving

industrial technologies for obtaining graphene memory [38].

4.3. Graphene integrated circuits

The first integrated circuit based on graphene was created back in 2011 by employees of the IBM Research divi-

sion [40]. It was a prototype of a frequency mixer operating at frequencies up to 10 GHz and based on a graphene

transistor. A broadband frequency mixer is one of the key components of high-frequency radio equipment, generating a

signal at the output that is the sum or difference of the signals arriving at the inputs of the device.

The proposed circuit consisted of a graphene transistor with a characteristic size of 550 nm and two aluminum

inductors several micrometers thick, located on a silicon carbide substrate (see Fig. 7). The problems of layout of the

component elements were solved in the process of creating a single chip. They consisted in the fact that when placing
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metal components (inductor coil) on top of the graphene transistor, they damaged the graphene sheet and disrupted the

functionality of the circuit. Changing the sequence of the RF circuit manufacturing process (first forming passive metal

components, and then graphene transistors) made it possible to eliminate the previously observed damage to the graphene

layers in order to obtain the expectedly high device characteristics. The circuit operated in the temperature range from

room temperature to 125 ◦C at a frequency of 10 GHz with stable characteristics.

FIG. 7. SEM image of a graphene frequency mixer integrated circuit [1]

However, despite significant progress in the development of graphene field-effect transistors in recent years and

the favorable prospects for their use [41], a number of unresolved problems that prevent the mass appearance of radio-

frequency integrated circuits using graphene components still remain.

5. Conclusion

So, as we see, promising carbon compounds are partially replacing silicon and other classic semiconductors in the

electronics industry. Most elements of modern micro- and nanoelectronics can already be implemented (at least as test

devices) on the basis of graphene or carbon nanotubes. Such world industry leaders as IBM and Intel are the largest

sponsors of research projects in the field of using nanostructured carbon in microelectronics.

IBM researchers have already achieved multiple increases in the speed of electronic circuits based on carbon nan-

otubes. Although this speed is still lower than that of modern silicon chips, there is confidence that new nanotechnological

processes will eventually unlock the enormous potential of carbon-based electronics. But only if the problems associated

with the influence of structural defects on the electronic properties of carbon nanomaterials will be solved in the future

(since ideal graphene layers or ideal nanotubes still do not exist).

On the other hand, it is too early to abandon silicon absolutely. It is still unlikely that classical semiconductors will

be completely replaced by carbon nanostructures in microchips within the next few decades. In the future, silicon still

has many potential applications in nanoelectronics as nanowires, nanotubes, nanodots and other structures, which are the

subject of research in many modern laboratories around the world. There are many prospects for the development of

modern nanoelectronics and it is impossible to predict what will happen in this industry in 10 or 20 years.
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ABSTRACT The elastic moduli and some thermal properties of four series of ternary β-Ti based alloys of

the XY3Ti11 composition, where X and Y are elements of IVB–VIB, IIIA and IVA groups, have been studied

using the projector augmented wave method within the density functional theory. It has been shown that the

calculated Young’s moduli in these series of alloys are lower than those in commercially pure α-Ti titanium

or in the Ti-6Al-4V alloy. With an increase in the concentration of s, p-elements and the number of electrons

in the d-band of the X-metal, the Young’s modulus tends to decrease. The variation of Debye temperature,

acoustic Grüneisen parameter and thermal conductivity in titanium alloy series is discussed. It is shown that

high thermal conductivity correlates with high Debye temperature, which in turn increases with increase of the

values of the Young’s modulus.
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1. Introduction

Due to the combination of biocompatibility and unique mechanical properties, such as shape memory effect and the

ability to achieve a low Young’s modulus (E), β-Ti based alloys are considered promising for use in medicine [1–3].

Currently, the most commonly used material for orthopedic and dental implants is commercially pure (CP) titanium or

an alloy of the composition Ti-6Al-4V [3–6]. At the same time, titanium remains a universal structural material and is

widely used in the aerospace, automotive, and shipbuilding industries, in particular, for aircraft skins, various fasteners,

chassis parts, rocket engines, etc. Due to its high strength and heat resistance, titanium and its alloys can withstand

significant loads. Since titanium does not react with salt water, materials based on it are widely used in shipbuilding. In

addition, titanium demonstrates excellent corrosion resistance. This property explains the popularity titanium has gained

in the chemical process and power generation industry where harsh environments are usual. It is used to manufacture key

equipment for the chemical and petrochemical industries. However, the addition of alloying impurities can significantly

affect its mechanical and physicochemical properties.

It is known that the addition of bioinert β-stabilizing elements such as Mo, Nb, Ta, etc. extends the temperature range

of β-Ti stability [7], and the addition of Zr and some s, p-elements (e.g. Sn, In) leads to a decrease in Young’s modulus.

Recently, a “cluster plus glue atom” model [8] was proposed to search for new low-modulus ternary titanium alloys, where

the alloying atom (X) is located in the center of the titanium cluster, with 8 atoms on the first and 6 atoms on the second

coordination sphere, and additional element (Y) plays the role of “glue atom”. It is believed that they should weakly

interact with the Ti atoms. Within this model, a theoretical study of the elastic moduli of a number of ternary titanium

alloys was carried out [9], and three types of clusters with the number of Y atoms equal to 1, 3 and 4 were considered. The

authors showed that in the case of TaNb3Ti11, the Young’s modulus exhibits the lowest value of ∼ 7 GPa. In work [10],

calculations of the electronic structure and elastic properties of a number of ordered XY3Ti11 alloys were also carried out

using the model [8] and it was found that all the alloys considered have Young’s modulus values lower than CP titanium,

and for five alloys it is even lower than 45 GPa. However, in both works [9,10], only transition metals were used as X and

Y elements.

The aim of this work is to study the elastic moduli of four series of titanium alloys of the XY3Ti11 composition with

In and Sn both at the X and Y positions, which will allow us to identify their role in reducing the Young’s modulus.

Besides such series of ternary Ti-based alloys are very convenient models for study not only elastic properties but also

© Kasparyan S.O., Ordabaev A.E., Bakulin A.V., Kulkova S.E., 2025
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for calculation of thermal properties, which are less studied by DFT methods [11, 12]. Thus, we calculate the Debye

temperature, acoustic Grüneisen parameter and thermal conductivity of the alloys and reveal their trends in dependence

on the alloy composition.

2. Computational details

The electronic structure and elastic properties of ternary titanium alloys were calculated using the projector aug-

mented wave method [13,14] within the VASP code [15,16] with a generalized gradient approximation for the exchange-

correlation functional in the form of PBE–GGA [17]. The maximum energy of plane waves from the basis set was 300 eV.

Integration over the Brillouin zone was performed using a 12×12×12 Monkhorst–Pack k-point grid [18]. Full optimiza-

tion of the atomic structure of the alloys included both the relaxation of atomic positions and a change in the cell volume.

Convergence was considered achieved if the difference in the total energies of two successive iterations did not exceed

10−6 eV. The convergence criterion for the forces acting on the atoms was 10−3 eV/Å.

The elastic constants were estimated using the finite difference method, based on the analysis of the change in the

total energy of the system during deformation. The bulk modulus was calculated using the following formula:

B = (C11 + 2C12) /3. (1)

To estimate the stability of the alloys, the Born criteria [19] C44 > 0, C11 − C12 = 2C ′ > 0, and C11 + 2C12 > 0
were used. The shear moduli (G) and Young’s moduli (E), as well as Poisson’s ratio (ν) were calculated within the

Voigt–Reuss–Hill model [20], which averages the values of elastic moduli calculated using the Voigt (V) [21] and Reuss

(R) [22] methods:

G =
GV +GR

2
, E =

9BG

3B +G
, v =

3B − 2G

2(3B +G)
, (2)

GV =
C11 − C12 + 3C44

5
, GR =

5 (C11 − C12)C44

4C44 + 3 (C11 − C12)
. (3)

Note that for cubic systems B = BV = BR.

3. Results and discussion

3.1. Elastic properties

Tables 1 and 2 present the calculated elastic constants and moduli for the studied series of alloys. All considered alloys

in accordance with above-mentioned Born criteria [19] are stable. However, the minimum values of C ′ are observed in

the following systems: InHf3Ti11 (first series), SnHf3Ti11 (second series), CrIn3Ti11 (third series), and WSn3Ti11 (fourth

series), which indicates their proximity to the critical threshold of mechanical stability. It is seen that the constant C11,

which characterizes the interaction between the elements X and Y with the titanium atoms in the second coordination

spheres, demonstrates a tendency to increase with the number of electrons in the d-band of the transition element. In

the studied systems the values of the constant C44 are significantly lower than the other elastic constants, which causes

a positive value of the difference (C11 – C44), known as the Cauchy pressure. A positive value of this parameter is

traditionally associated with the metallic bond.

Comparison of the systems with Sn and In at the X-position revealed a slight increase in the C11 and C12 values in

Sn-containing alloys, while C44 demonstrates a weakly expressed growth in In-containing alloys. The lowest C ′ values

are in the alloys with Zr and Hf, which is consistent with the previously noted trend. In the systems with In and Sn

at the Y-position, a correlation was observed between the changes in the C ′ and C44 constants, with the latter having

values significantly higher than in the alloys of the first two series. In general, the C11 constants are lower in the last two

series, which indicates a decrease in the interatomic interaction in these alloys with an increase in the concentration of

s, p-elements.

The results of elastic moduli calculations demonstrate the following trend: B > E > G is observed for almost all

alloy series (Fig. 1). The shear modulus is characterized by comparatively low values. The lowest values of Young’s

modulus in each series were: 37.3 GPa for InHf3Ti11, 36.5 GPa for SnHf3Ti11, 65.7 GPa for CrIn3Ti11 and 52.4 GPa for

WSn3Ti11 (Fig. 1). At the same time, low values of Young’s modulus correspond to low values of elastic constant C11

(shown by bold in Tables 1 and 2). It should be noted that the values of Young’s modulus for the studied alloys are lower

than for pure titanium and Ti-6Al-4V alloy (105 – 120 GPa [23, 24]). However, these results were obtained for α-phase.

Of particular interest are InHf3Ti11 and SnHf3Ti11 alloys, demonstrating the lowest values of Young’s modulus, which

makes them promising for further research in the context of biomedical application. In addition, a relationship was found

between the increase in the number of valence d-electrons and the growth of the bulk modulus B in the In(Sn)Y3Ti11
alloy series. In general, the alloys with In and Sn elements at the X-position exhibit close values of all moduli (Table 1).

Young’s modulus in the series of alloys with In and Sn at the Y-position (Table 2) demonstrates a tendency to decrease in

value with an increase in the number of electrons in the d-band of the X-element. High values of Young’s modulus in the

series of alloys with Sn correlate with high values of the shear modulus in the case of Zr and Hf.
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FIG. 1. Theoretical elastic moduli in dependence on the number of valence d-electrons in alloys

In(Sn)Y3Ti11 (a) and XIn(Sn)3Ti11 (b) with metals of IVB–VIB groups

TABLE 1. Elastic constant and moduli (in GPa) for series of alloys InY3Ti11 and SnY3Ti11

Alloy C11 C12 C44 B G E Alloy C11 C12 C44 B G E

InTi3Ti11 110.5 88.8 30.7 96.1 20.2 56.7 SnTi3Ti11 111.1 91.2 31.6 97.8 19.9 56.0

InV3Ti11 157.7 92.1 34.8 113.9 34.0 92.8 SnV3Ti11 164.4 92.5 38.8 116.4 37.6 101.9

InCr3Ti11 174.0 88.5 25.9 117.0 31.7 87.3 SnCr3Ti11 185.9 95.8 25.9 125.8 32.4 89.4

InZr3Ti11 109.0 86.7 31.2 94.1 20.7 57.7 SnZr3Ti11 109.8 87.5 28.3 94.9 19.5 54.7

InNb3Ti11 140.5 96.0 28.4 110.8 25.8 71.8 SnNb3Ti11 135.7 95.5 25.6 108.9 23.2 65.0

InMo3Ti11 155.7 102.4 22.0 120.2 23.8 66.9 SnMo3Ti11 148.7 106.6 21.0 120.7 21.0 59.5

InHf3Ti11 96.3 91.3 32.5 93.0 13.0 37.3 SnHf3Ti11 97.8 92.9 31.6 94.5 12.7 36.5

InTa3Ti11 140.5 96.6 42.1 111.3 32.4 88.6 SnTa3Ti11 142.5 99.4 42.1 113.8 32.2 88.2

InW3Ti11 163.7 104.9 35.1 124.5 32.7 90.2 SnW3Ti11 163.6 107.0 36.8 125.9 33.1 91.3

TABLE 2. Elastic constant and moduli (in GPa) for series of alloys XIn3Ti11 and XSn3Ti11

Alloy C11 C12 C44 B G E Alloy C11 C12 C44 B G E

TiIn3Ti11 116.8 94.8 60.0 102.1 31.0 84.4 TiSn3Ti11 132.7 97.8 60.9 109.4 37.0 99.8

VIn3Ti11 121.4 98.7 64.4 106.3 32.8 89.3 VSn3Ti11 121.5 106.9 55.1 111.8 25.6 71.4

CrIn3Ti11 113.1 99.8 50.9 104.2 23.6 65.7 CrSn3Ti11 113.2 97.8 50.0 103.0 24.3 67.7

ZrIn3Ti11 119.4 87.9 59.3 98.4 35.0 94.0 ZrSn3Ti11 130.0 89.9 61.6 103.3 39.3 104.6

NbIn3Ti11 122.1 94.5 59.6 103.7 33.4 90.6 NbSn3Ti11 126.6 100.4 54.0 109.1 30.8 84.5

MoIn3Ti11 118.1 97.0 51.7 104.0 27.7 76.4 MoSn3Ti11 117.2 105.1 43.6 109.1 20.6 58.0

HfIn3Ti11 118.5 86.4 61.4 97.1 36.0 96.2 HfSn3Ti11 131.1 86.4 65.1 101.3 42.5 111.8

TaIn3Ti11 116.8 94.8 60.0 102.1 31.0 84.4 TaSn3Ti11 132.4 97.8 59.4 109.3 36.4 98.2

WIn3Ti11 121.4 98.7 64.4 106.2 32.8 89.3 WSn3Ti11 111.6 105.7 48.3 107.7 18.5 52.4
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There are several approaches to estimate the ductile/brittle behavior of materials. In [25] the ratio of the shear modulus

to the bulk modulus is used for these purposes: the values G/B < 0.5 correspond to ductile behavior, and G/B > 0.5
to brittle behavior. As can be seen from Fig. 2a, the G/B values for all series of alloys are below 0.5. The second

approach [25] is that in ductile materials, the Poisson’s ratio (ν) should be greater than 1/3. From Fig. 2b, it is seen that

ν is generally greater than this value, with the exception of the HfSn3Ti11 alloy, while the ν values for HfIn3Ti11 and

ZrSn3Ti11 correspond to the critical value. In addition, the values of Poisson’s ratio are used to analyze the nature of the

chemical bond in the systems. Thus, the value ν ≈ 0.25 indicates an ionic bond, which corresponds exactly to brittle

fracture, while high values ν indicate a strong metallic bond and good toughness.

FIG. 2. Pugh’s ratio G/B (a), Poisson’s coefficient ν (b), B/C44 (c), and HV for the alloys

In(Sn)Y3Ti11 and XIn(Sn)3Ti11

In addition, an increase in the ratio of the bulk modulus to the C44 constant [25] can also correlate with a decrease in

the brittleness of the material. It is seen from Fig. 2c that in general these values are greater than ∼ 1.5, while the values

for the InY3Ti11 and SnY3Ti11 alloy series are higher than for alloys with simple metals in the Y-position. The Vickers

hardness of the alloys was also estimated using the following empirical relationship [26]:

HV = 0.92 (G/B)
1.137

G0.708. (4)

Vickers hardness is used to evaluate the ability of materials to resist deformation under compressive stress. Several

empirical formulas were proposed for its calculation, as shown in our earlier work [27]. Fig. 2d demonstrates that the

microhardness in XSn3Ti11 alloys with metals of IVB group is increased from 3.5 to 4.9 GPa in the set of isoelectronic

elements. These values are significantly higher than that of 1.8 GPa for Ti-6Al-4V. High microhardness values are ob-

served for In(Sn)Y3Ti11 alloys with V and XIn3Ti11 alloys with V, Nb, Ta (Table 3). In addition, other parameters that

are also used to describe brittle/ductile behavior were also calculated, in particular, the fracture toughness (KIC) and the

brittleness index (Mdt). Fracture toughness characterizes the resistance to crack propagation, and the brittleness index

reflects the damage resistance and can be determined using HV and KIC [28, 29], and the large value of the Mdt means

a weak damage tolerance. The KIC and Mdt were obtained from the following expressions:

KIC = V
1/6
0

G

(

B

G

)1/2

, (5)

Mdt =
HV

KIC
, (6)
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TABLE 3. Calculated values of Vickers microhardness HV (in GPa), fracture toughness KIC (in

MPa·m1/2), and brittleness index Mdt (in µm−1/2)

Alloy HV KIC Mdt Alloys HV KIC Mdt Alloy HV KIC Mdt

InTi3Ti11 1.33 0.71 1.87 SnTi3Ti11 1.27 0.71 1.78 TiIn3Ti11 2.72 0.92 2.97

InV3Ti11 2.85 1.00 2.86 SnV3Ti11 3.34 1.07 3.12 VIn3Ti11 2.89 0.96 3.01

InCr3Ti11 2.42 0.99 2.44 SnCr3Ti11 2.33 1.03 2.25 CrIn3Ti11 1.60 0.80 1.99

InZr3Ti11 1.41 0.72 1.96 SnZr3Ti11 1.26 1.10 1.14 ZrIn3Ti11 3.55 0.96 3.70

InNb3Ti11 1.77 0.87 2.04 SnNb3Ti11 1.48 1.28 1.16 NbIn3Ti11 3.07 0.96 3.20

InMo3Ti11 1.39 0.86 1.61 SnMo3Ti11 1.10 0.81 1.36 MoIn3Ti11 2.17 0.87 2.48

InHf3Ti11 0.61 0.57 1.08 SnHf3Ti11 0.58 0.56 1.03 HfIn3Ti11 3.80 0.97 3.93

InTa3Ti11 2.68 0.97 2.75 SnTa3Ti11 2.58 0.98 2.63 TaIn3Ti11 3.50 0.98 3.57

InW3Ti11 2.40 1.03 2.33 SnW3Ti11 2.42 1.05 2.32 WIn3Ti11 2.36 0.89 2.64

where V0 is the cell volume per atom (in m3). The obtained values of these parameters are given in Table 3.

It is seen from Table 3 that for alloys with In and Sn in the X-position the scatter in the KIC parameter depending

on the transition metal (Y) is larger (0.56 – 1.28 MPa·m1/2) than that in the series of alloys with simple elements in

the Y-position (0.72 – 1.04 MPa·m1/2), and the influence of Sn on this scatter is more significant than that of In. The

values of the KIC parameter in the considered series of alloys are significantly lower than the values obtained for c-CrH

(3.42 MPa·m1/2 [11]), AlN (2.79 MPa·m1/2 [30]), c-BN (5 MPa·m1/2 [30]) or for V(Nb)5Si3B compounds (∼4.0 –

4.70 MPa·m1/2 [12]). At the same time, the values of the brittleness index for the studied alloys are significantly lower

than for the compounds indicated above. In the series with In and Sn in the X-position, the lowest Mdt value corresponds

to alloys with Hf, and the highest – to those with V (Table 3). With increasing concentration of simple metals, the

brittleness index increases, and the maximum values of 3.93 and 4.58 µm−1/2 were obtained for alloys with Hf in the

X-position. That is, a decrease in the hafnium concentration leads to a decrease in the damage resistance of the alloys.

3.2. Thermal properties

It is known that the free energy is significantly affected by lattice vibrations, which can be characterized in terms of

the Debye temperature ΘD and the Grüneisen constant γa [31]. In addition, the bond strength between atoms can also

correlate with the Debye temperature: a strong bond strength corresponds to a high Debye temperature [32]. The Debye

temperature of alloys can be calculated using the formula from [33]:

ΘD =
h

kB

[

3n

4π

(

NAρ

M

)]1/3

vm, (7)

where h and kB are the Planck and Boltzmann constants, NA is the Avogadro constant, n is the number of atoms in

the alloy, ρ is the density of the substance, M is its molecular weight, vm is the average sound velocity, which can be

calculated using the following formula from [34]:

vm =

[

1

3

(

2

v3t
+

1

v3l

)]

−1/3

, (8)

where vt and vl are the transverse and longitudinal sound velocities, respectively, which are obtained from the following

expressions:

vl =

(

B + 4G/3

ρ

)1/2

, (9)

vt =

(

G

ρ

)1/2

. (10)

It is known that in order to study the thermal expansion or thermal conductivity of crystals, it is necessary to use a

nonharmonic approximation to describe the interaction of atoms. For these purposes, it is necessary to know the acoustic

Grüneisen parameter γa, which was calculated as in [35]:

γa =
3

2

(

3v2l − 4v2t
v2l + 2v2t

)

. (11)
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Table 4 presents the values of the density (ρ) of the alloys, which was estimated as the mass of atoms in the com-

putational cell divided by its volume, the sound velocities (longitudinal vl, transverse vt and average vm), the acoustic

Grüneisen parameter γa, and the Debye temperature ΘD for two series of alloys with In at the X and Y positions that is

with increase of In concentration. Since there are no corresponding experimental data on the Debye temperature for the

studied alloys, we estimated it for the Ti-6Al-4V alloy (Ti-10.2Al-3.6V at. %) in the β phase, while the elastic constants

were calculated using the EMTO-CPA method [36], which takes into account the disordering effect. The obtained value of

ΘD according to formula (7) is 315.6 K, which agrees well with the experimental value of 326.0 K [37]. The values of ΘD

in dependence on elastic anisotropy are 264.2 – 278.2 K [23]. The estimation for β-Ti in the used model with a vacancy

(i.e. Ti also occupies X and Y positions in the computational cell) gives the value 251.8 K that is smaller in comparison

with the previous cases. That is, the decrease of the Debye temperature means a decrease in the bond strength and a lower

hardness. The smallest ΘD in alloy with Hf in the Y-position (Table 4), indicating the lowering of bond strength, that

correlates with the lowest Young’s modulus (Table 1) and hardness (Fig. 2d) as well as with the largest γa. In the case of

alloy with Hf in the X-position, an increase in ΘD and, consequently, the bond strength and HV is observed. It should be

noted that a correlation between the Debye temperature and Young’s modulus takes place for all studied series of alloys.

The obtained Debye temperatures of the alloys are subsequently used to calculate their lattice thermal conductivity.

TABLE 4. Density ρ (in g/cm3), sound velocities (longitudinal vl, transverse vt and average vm in m/s),

acoustic Grüneisen parameter γa, and Debye temperature ΘD (in K)

Alloy ρ vl vt vm γa ΘD Alloy ρ vl vt vm γa ΘD

InTi3Ti11 4.877 5023 2037 2306 2.64 263.2 TiIn3Ti11 5.458 5125 2382 2682 2.24 301.6

InV3Ti11 5.176 5547 2563 2888 2.26 334.8 VIn3Ti11 5.545 5201 2433 2739 2.22 309.2

InCr3Ti11 5.379 5512 2448 2762 2.38 324.0 CrIn3Ti11 5.580 4929 2054 2324 2.57 262.8

InZr3Ti11 5.332 4777 1968 2227 2.60 248.8 ZrIn3Ti11 5.608 5086 2499 2806 2.06 313.5

InNb3Ti11 5.621 5082 2141 2421 2.53 274.8 NbIn3Ti11 5.707 5097 2420 2722 2.17 305.8

InMo3Ti11 5.905 5070 2006 2273 2.71 261.3 MoIn3Ti11 5.778 4939 2190 2472 2.38 278.5

InHf3Ti11 6.900 3999 1373 1561 3.07 174.8 HfIn3Ti11 6.138 4861 2422 2718 2.01 304.0

InTa3Ti11 7.207 4629 2120 2389 2.28 270.8 TaIn3Ti11 6.241 4894 2387 2682 2.08 301.4

InW3Ti11 7.511 4730 2086 2355 2.40 269.9 WIn3Ti11 6.316 4756 2144 2418 2.33 272.6

It is known that the acoustic Grüneisen parameter γa is related to scattering between phonons. The larger γa means

the more inharmonic the phonons behavior, which in turn leads to lower thermal conductivity. The values of γa were

calculated using formula (11) and the Leontiev formula [38], which used not only the average value of the sound velocities,

but also density of material and bulk modulus. In the case of the test alloy Ti-6Al-4V, almost the same values of γa equal

∼ 2.50 were obtained. However, the experimental value from paper [37] is more than two times smaller (1.100), since the

so-called thermodynamic Grüneisen parameter is usually measured in experiment. As noted earlier in [39], the acoustic

Grüneisen parameter can differ significantly from the thermodynamic parameter (γD), for example, for rare earth elements

the difference in these coefficients reaches an average of two times. Our calculation of the acoustic Grüneisen parameters

for Nb, Ta and other metals shows a similar trend. It is seen from Table 4 that an increase in γa in the InY3Ti11 alloy

series is observed in the case of 4d-metals, as well as Ti and Hf in the Y-position. In the case of Sn in the Y-position, large

γa values are characteristic of VIB metals.

A few words should be added about the sound velocities which are used for calculation of both characteristics ΘD

and γa. It is well known that the sound velocities in crystal with cubic symmetry are determined by elastic constants

(Table 1) or their combinations depending on the direction of propagation. Since standard formulas for calculating the

longitudinal and transverse sound velocities (Table 5) were used [40], they are not given. The longitudinal sound velocity

along the [100] direction is related to the elastic constant C11, which increases with the number of d-electrons of the

transition metals, therefore we observe an increase in the [100]vl in the series InTi3Ti11–InV3Ti11–InCr3Ti11 (Table 5)

and in the case of metals isoelectronic to the Y-element. The transverse two modes are related to elastic constant C44,

which is significantly lower than C11, therefore the values of vt1 and vt2 are equal and almost two times smaller than the

value of the vl. In the case of the [110] direction, the value of vl is the highest, and the transverse velocities are different in

accordance with their determination. Finally, in the case of the [111] direction, the longitudinal sound velocity reaches a

maximum for VB elements for InY3Ti11 (Table 5). Replacing In with Sn does not lead to significant changes in the values

of sound velocities. An increase in the concentration of simple metals leads to a decrease in [100]vl and an increase in the

transverse modes also (Table 6).
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TABLE 5. The anisotropic sound velocities (in m/s) in alloys InY3Ti11

Alloy [100]vl [010]vt1 [001]vt2 [110]vl [1-10]vt1 [001]vt2 [111]vl [11-2]vt1 [1-10]vt2

InTi3Ti11 4760 2510 2510 5171 1490 2510 5300 1892 1892

InV3Ti11 5519 2594 2594 5554 2518 2594 5566 2543 2543

InCr3Ti11 5752 2218 2218 5476 2832 2218 5381 2643 2643

InZr3Ti11 4521 2418 2418 4919 1446 2418 5044 1828 1828

InNb3Ti11 5000 2248 2248 5107 1990 2248 5143 2080 2080

InMo3Ti11 5134 1931 1931 5057 2124 1931 5031 2062 2062

InHf3Ti11 3736 2169 2169 4278 600 2169 4444 1344 1344

InTa3Ti11 4415 2416 2416 4721 1744 2416 4819 1994 1994

InW3Ti11 4668 2162 2162 4749 1978 2162 4775 2041 2041

TABLE 6. The anisotropic sound velocities (in m/s) in alloys XIn3Ti11

Alloy [100]vl [010]vt1 [001]vt2 [110]vl [1-10]vt1 [001]vt2 [111]vl [11-2]vt1 [1-10]vt2

TiIn3Ti11 4625 3315 3315 5511 1419 3315 5776 2238 2238

VIn3Ti11 4679 3407 3407 5608 1433 3407 5885 2288 2288

CrIn3Ti11 4502 3020 3020 5310 1092 3020 5553 1958 1958

ZrIn3Ti11 4615 3252 3252 5391 1677 3252 5626 2324 2324

NbIn3Ti11 4625 3231 3231 5424 1555 3231 5665 2257 2257

MoIn3Ti11 4521 2990 2990 5249 1353 2990 5470 2050 2050

HfIn3Ti11 4393 3162 3162 5165 1617 3162 5398 2253 2253

TaIn3Ti11 4420 3174 3174 5218 1544 3174 5458 2225 2225

WIn3Ti11 4343 2918 2918 5059 1333 2918 5277 2005 2005

Thermal conductivity (kph) reflects atomic interaction within crystal at a certain temperature. The calculation of the

lattice thermal conductivity of the alloys was carried out within the Slack’s model [41] using the empirical formula:

kph =
AV0MaΘ

3

D

Tγ2
an

2/3
, (12)

where V0 is the volume per atom, Ma is the average atomic mass per atom, T is the temperature, n is the number of atoms

in the computational cell, A is a coefficient depending on the acoustic Grüneisen parameter γa. The coefficient A can be

calculated as follows:

A =
2.43 · 10−8

1− 0.514/γa + 0.228/γ2
a

. (13)

Figure 3 shows the temperature dependences of kph. The highest values of the thermal conductivity in each series of

alloys, for example, calculated for a temperature of 300 K are 1.64 W/(m·K) for InV3Ti11, 2.18 W/(m·K) for SnV3Ti11,

2.15 W/(m·K) for HfIn3Ti11, and 3.15 W/(m·K) for HfSn3Ti11. The lowest values of kph at the same temperature are:

0.18 W/(m·K) for InHf3Ti11, 0.17 W/(m·K) for SnHf3Ti11, 0.71 W/(m·K) for CrIn3Ti11, and 0.37 W/(m·K) for WSn3Ti11.

In general, there is a correlation between the values of thermal conductivity and Debye temperature. This is especially

pronounced for the alloys of the first two series, i.e. for In and Sn in the X-position. At the same time, in alloys with a

large concentration of simple metals (In and Sn in the Y-position) compared to transition metals (in the X-position), this

trend may be imperfect, since close values of ΘD were obtained for several alloys. As can be seen from Fig. 3, the thermal

conductivity decreases sharply with increasing temperature, and at T > 600 K the decrease in the thermal conductivity

slows down.

The theoretical lower limit of the thermal conductivity is known as intrinsic minimum lattice thermal conductivity

kmin of a crystal. It can be calculated using two models: Clarke’s model [42, 43] and Cahill’s model [44]. In the Clarke’s
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FIG. 3. Calculated lattice thermal conductivities kph in the temperature ranging from 50 to 550 K for

four series of alloys: InY3Ti11 (a), SnY3Ti11 (b), XIn3Ti11 (c), XSn3Ti11 (d), where X and Y are

elements of IVB–VIB groups

model,

kmin = 0.87kBM
−2/3
a E1/2ρ1/6, (14)

Ma =
M

mNa
, (15)

where Ma is the average atomic mass, M is the molar mass, and m is the total number of atoms.

In Cahill’s model kmin is expressed as

kmin =
kB
2.48

n2/3 (vl + 2vt) . (16)

It is seen from Table 7 that the highest values of kmin in each series are observed for the InV3Ti11, SnV3Ti11,

VIn3Ti11, and ZrSn3Ti11 alloys. The kmin values calculated using Clarke’s model are somewhat lower than the values

obtained by Cahill’s model, which is due to the fact that Clarke’s model does not take into account the contribution of

the phonon spectrum [45]. In addition, the kph results calculated using Slack’s model at high temperatures (Fig. 3)

are close to those obtained using Clarke’s formula. It is seen that for all alloys there is a correlation between the high

kmin value and the Debye temperature (Table 4). In the case of VIn3Ti11 and ZrIn3Ti11, practically the same thermal

conductivity values were obtained, and the difference in the Debye temperature values is insignificant, it is approximately

4.3 K. Besides, smaller γa values also indicate higher thermal conductivity but this trend is imperfect with increase of

s, p-element concentration.

4. Conclusion

The elastic and some thermal properties of ternary titanium alloys of the composition InY3Ti11, SnY3Ti11, XIn3Ti11,

and XSn3Ti11, where X and Y are transition metals of IVB–VIB groups, are calculated using the projector augmented

wave method within the density functional theory. It is shown that the values of Young’s modulus for almost all alloys are

lower than those of pure titanium and the Ti-6Al-4V alloy used for practical applications. The minimum values of Young’s

modulus (∼ 37 GPa) are obtained for the alloys with Hf in the Y-position, which demonstrate a weaker interaction of the

X and Y atoms with the titanium atoms located on the second coordination sphere. This trend (low C11 corresponds to
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TABLE 7. Calculated values of kmin (in W/(m·K)) for series of alloys In(Sn)Y3Ti11 and XIn(Sn)3Ti11

Alloy kClarke

min kCahill

min Alloys kClarke

min kCahill

min Alloy kClarke

min kCahill

min Alloys kClarke

min kCahill

min

InTi3Ti11 0.60 0.74 SnTi3Ti11 0.60 0.74 TiIn3Ti11 0.67 0.78 TiSn3Ti11 0.69 0.80

InV3Ti11 0.77 0.90 SnV3Ti11 0.79 0.92 VIn3Ti11 0.69 0.80 VSn3Ti11 0.61 0.75

InCr3Ti11 0.76 0.90 SnCr3Ti11 0.74 0.89 CrIn3Ti11 0.59 0.72 CrSn3Ti11 0.60 0.73

InZr3Ti11 0.55 0.68 SnZr3Ti11 0.54 0.67 ZrIn3Ti11 0.69 0.79 ZrSn3Ti11 0.72 0.82

InNb3Ti11 0.62 0.76 SnNb3Ti11 0.59 0.73 NbIn3Ti11 0.68 0.79 NbSn3Ti11 0.65 0.77

InMo3Ti11 0.60 0.75 SnMo3Ti11 0.57 0.73 MoIn3Ti11 0.62 0.74 MoSn3Ti11 0.54 0.68

InHf3Ti11 0.39 0.53 SnHf3Ti11 0.39 0.53 HfIn3Ti11 0.67 0.76 HfSn3Ti11 0.72 0.81

InTa3Ti11 0.61 0.71 SnTa3Ti11 0.61 0.71 TaIn3Ti11 0.67 0.77 TaSn3Ti11 0.67 0.78

InW3Ti11 0.62 0.73 SnW3Ti11 0.61 0.73 WIn3Ti11 0.61 0.72 WSn3Ti11 0.49 0.63

a lower value of E) becomes less perfect with an increase in the concentration of the s, p-element. The trends in the

change of the shear modulus and Young’s modulus in the studied alloys with an increase in the number of d-electrons

of the transition metal are similar, and their behavior demonstrates a non-monotonic character. The decrease of Young’s

modulus in the series of alloys with In and Sn in the Y-position with an increase in the number of d-electrons of the

X-element is also observed.

The studied ternary alloys mainly have a ductile fracture character according to three empirical criteria, although

with an increase in the concentration of s, p-elements, the ionic contribution increases, which leads to an increase in

the brittleness and microhardness of the alloys. In addition, with an increase in the concentration of simple metals, the

brittleness index also increases and the maximum values of 3.93 and 4.58 µm−1/2 were obtained for alloys with Hf in the

X-position. That is, in alloys with a lower hafnium concentration, there is a decrease in the fracture (damage) resistance.

The Debye temperature was estimated for all considered ternary alloys and it was found that its lower values correlate

with low values of the Young’s modulus. The calculation of thermal conductivity showed that it correlates with the Debye

temperature (large ΘD corresponds to alloys with higher thermal conductivity and larger Young’s moduli). In alloys with

simple metals in the Y-position, i.e. with their high concentration, this trend can be imperfect. In general, the influence

of s, p-elements on elastic and thermal characteristics is less pronounced compared to transition metals, regardless of

the X or Y position they occupy, and reflects mainly the size effect, whereas the influence of transition metals depends

significantly on the number of d-electrons of alloying elements.

References

[1] Gunther V.E., Kotenko V.V., Mirgazizov M.Z., Polenichkin V.K., Vityugov I.A., Itin V.I., Ziganshin R.V., Temerhanov F.T. Shape memory alloys

in medicine. TSU Publ., Tomsk, 1986, 208 p. (in Russian)

[2] Long M., Rack H.J. Titanium alloys in total joint replacement – a materials science perspective. Biomater., 1998, 19, P. 1622–1639.

[3] Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater., 2003,

4, P. 445–454.

[4] Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater., 2008, 1, P. 30–42.

[5] Zhang L.C., Chen L.Y. A review on biomedical titanium alloys: recent progress and prospect. Adv. Eng. Mater., 2019, 21, 1801215.

[6] Mohammed M.T., Khan Z.A., Siddiquee A.N. Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review. Int. J. Mater.

Metall. Eng., 2014, 8 (8), P. 822–827.

[7] Yu Z. Titanium alloys for biomedical development and applications. Design, microstructure, properties, and application. Elsevier, Amsterdam,

2022, 232 p.

[8] Hao C.P., Wang Q., Ma R.T., Wang Y.M., Qiang J.B., Dong C. Cluster-plus-glue-atom model in bcc solid solution alloys. Acta Phys. Sin., 2011,

60 (11), 116101.

[9] Yan X., Cao W., Li H. Novel biomedical Ti-based alloys with low Young’s modulus: a first-principles study. J. Mater. Eng. Perform., 2024, 33,

P. 6835–6842.

[10] Kasparyan S.O., Bakulin A.V., Kulkova S.E. Mechanical properties of ternary XY3Ti11 alloys. Izvestiya vuzov. Fizika, 2024, 67, P. 77–85. (in

Russian)

[11] Bai H., Duan Y., Qi H., Peng M., Li M., Zheng S. Anisotropic elastic and thermal properties and damage tolerance of CrH: A first-principles

calculation. Vacuum, 2024, 222, 112962.

[12] Sun Y., Yang A., Duan Y., Shen L., Peng M., Qi H. Electronic, elastic, and thermal properties, fracture toughness, and damage tolerance of

TM5Si3B (TM = V and Nb) MAB phases. Int. J. Refract. Met. Hard Mater., 2022, 103, 105781.
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ABSTRACT The effect of the hydrothermal fluid pH on the chemical and phase composition, as well as the

size parameters and morphology of crystallites and particles of hydrothermal synthesis products formed in the

Na2O–Bi2O3–Fe2O3–MoO3 system at T = 170 ◦C and P < 7 MPa has been studied. It has been established

that in the acidic pH region, the bulk chemical composition of the hydrothermal synthesis products is depleted

relative to the nominal composition specified for the synthesis in iron oxide, while in the alkaline pH region,

it is depleted in molybdenum oxide and, to a lesser extent, in bismuth oxide, while the best correspondence

between the nominal and bulk composition observed at pH = 2. It is shown that in the pH range from 2 to 6

new compounds of variable composition (Na0.19−0.47Bi0.42−0.85Fe0.14−0.31MoOy) with a scheelite-like structure

(sp. gr. I 4̄, No. 82) are formed, which have not been previously described in the scientific literature. These

compounds with the smallest mean crystallite size (∼25 nm) were obtained at pH = 2, and it was shown

that under these conditions polycrystalline plate-like particles (thickness (h) ∼50–150 nm) are formed, often

having a curved shape, which grow together to form agglomerates with a “flower-like” morphology. It was found

that fluorite-type solid solutions (Bi3.65−4.30Fe0.37−0.45MoOz) are formed in alkaline media (isostructured to the

oxide δ-Bi2O3 (sp. gr. Fm3̄m, No. 225)).

KEYWORDS hydrothermal synthesis, sodium bismuth iron molybdate, scheelite-like structure, nanocrystals,

fluorite-type solid solutions.
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1. Introduction

Multicomponent molybdates are the objects of active research, since representatives of this class of complex oxides

have a wide range of physicochemical properties that are interesting for study [1]. Bismuth molybdate, Bi2MoO6, is a

single-layer Aurivillius phase consisting of [Bi2O2]2+ layers sandwiched between [MoO4]2− slabs and could be used

as potential LIB anode material [2, 3] and outstanding photocatalyst [4]. Bismuth iron molybdate, Bi3(FeO4)(MoO4)2,

has a monoclinic structure related to the scheelite (CaWO4) structure and could be used as a good photocatalyst for

water splitting and photodegradation of organic contamination [5,6]. Sodium bismuth molybdate, NaBi(MoO4)2, as well

as other related compounds of MIMIII (MoO4)2 stoichiometry, has a tetragonal scheelite-like structure and could be

potentially used as host crystals for active ions having luminescence properties [7–9].

Obtaining the mentioned compounds, as well as other multicomponent molybdates, using low-temperature synthesis

methods in aqueous environments, including hydrothermal conditions, can ensure their formation in nanocrystalline form,

which can potentially lead to the discovery of new unique properties [10]. In addition, lowering the synthesis temperature

may lead to the discovery of new compounds that are unstable at elevated temperatures [11]. For example, in the Bi2O3–

Fe2O3–WO3 system, the formation of new compounds of variable composition with a cubic pyrochlore structure under

hydrothermal conditions (T = 90 – 200 ◦C, P ≤7 MPa) was established, the upper temperature limit of stability of which

is ∼ 725 ◦C [12, 13].

The relevance of the work is related to the study of phase formation in the previously unexplored Na2O–Bi2O3–

Fe2O3–MoO3–(H2O) system and the accumulation of information that can provide a basis for obtaining new multicom-

ponent molybdates, including in the form of nanoparticles and nanocomposites with unique properties. The aim of the

work is to study the influence of the hydrothermal fluid pH on the chemical and phase composition, as well as the size

parameters and morphology of crystallites and particles of hydrothermal synthesis products formed in the Na2O–Bi2O3–

Fe2O3–MoO3 system.

© Lomakin M.S., 2025
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2. Materials and Methods

2.1. Synthesis section

The synthesis procedure, which is the same for all samples, is described below. Nominal composition specified for

the synthesis corresponded to the following atomic ratios: (1) Bi0.50Fe0.37MoO4.31 and (2) Bi0.84Fe0.56MoO5.10. To

obtain a sample, 2 mmol of crystalline hydrate of bismuth (III) nitrate, Bi(NO3)3·5H2O (puriss. spec.), and (1) 1.48 or

(2) 1.33 mmol of crystalline hydrate of iron (III) nitrate, Fe(NO3)3·9H2O (pur.), were dissolved in 5 ml of 6 M HNO3

(puriss. spec.), after which 25 ml of distilled water was added to the resulting solution. Next, (1) 4 or (2) 2.38 mmol

of sodium molybdate (VI) crystalline hydrate, Na2MoO4·2H2O (puriss. spec.), was dissolved in 20 ml of distilled water

and the resulting solution was added dropwise into the acidic solution of bismuth and iron nitrates stirred with a magnetic

stirrer at 800 rpm (∼30 mL of distilled water was then added there and used to rinse the beaker that had contained the

sodium molybdate solution). After stirring the obtained suspension for 1 h, a solution of 2 M NaOH was added to it

dropwise until reaching pH of a certain value (1 (no NaOH), 2, 4, 6, 8, 10). The amorphous precursor suspension obtained

this way, was additionally stirred at 1000 rpm for ∼1 h and then transferred into Teflon chambers (∼80% filling) and

placed in steel autoclaves, which were then put in a furnace heated up to T = 170 ◦C. After 66 h, the autoclaves were

removed from the furnace and cooled in air. The resulting precipitates were separated from the mother liquor (it was

poured out), rinsed with distilled water several times by decantation and dried at 90 ◦C for 24 h.

2.2. Characterization

The crystal structure of the synthesized samples was analyzed by XRD using an X-ray powder diffractometer DRON-

8N (IC “Burevestnik”, Russia) in the Bragg-Brentano geometry (an X-ray tube with copper anode, Ni Kβ filter, Cu-Kα

radiation (average wavelength λ = 1.54186 Å)), equipped with a position-sensitive (PSD) linear detector Mythen2 R 1D

(DECTRIS Ltd., Switzerland) with an opening angle of 4.48◦ and with a single parabolically bent Göbel Mirror placed

after the X-ray tube at the primary beam focus. The measurements were carried out in the range of angles 2θ = 10◦ – 65◦

with a step of ∆2θ = 0.0142◦, and the total time at the point was 8 seconds.

X-ray phase analysis of the measured XRD patterns of samples was carried out using the Crystallographica Search-

Match program, version 3.1.0.2 (Oxford Cryosystems Ltd., England) using the Powder Diffraction File-2

(PDF-2) [14].

Scanning electron microscopy (SEM) images and bulk elemental composition of the samples, as well as elemental

composition of particles belonging to the different morphological motifs (local analysis), were obtained on a Tescan

Vega 3 SBH scanning electron microscope (Tescan Orsay Holding, Czech Republic) with an Oxford Instruments Energy

Dispersive X-ray Microanalysis (EDXMA) attachment. The relative number of elements was calculated using the AZtec

software. When determining the bulk composition the emission spectra were accumulated from three sites of each sample

with a total area of ∼7 mm2 and a set of statistics for at least 1 million pulses at each site, then the data were averaged.

3. Results and discussions

3.1. Chemical composition

Nominal composition specified for the synthesis and the EDXMA data on the bulk chemical composition of the sam-

ples are presented in Table 1 in the form of atomic ratios. It should be noted that for the two nominal compositions studied

(Bi0.50Fe0.37MoO4.31 and Bi0.84Fe0.56MoO5.10), a similar tendency is observed in the change in the corresponding bulk

compositions with a change in the hydrothermal fluid pH. According to the presented data, the best agreement between

the nominal and bulk composition is observed for the samples obtained at pH = 2, while for all other samples a noticeable

depletion of the bulk composition relative to the nominal one in one or two components is clearly observed: pH = 1

and 4 in Fe2O3; pH = 6 in MoO3; pH = 8 and 10 in Bi2O3 and MoO3. Thus, the observed tendency in the change in

the bulk composition relative to the nominal one with a change in the hydrothermal fluid pH resembles that established

earlier in the study of the Bi2O3–Fe2O3–WO3 system [15]: in the acidic pH region, a depletion of the bulk chemical

composition in iron oxide is observed, while in the alkaline pH region, a depletion of the bulk chemical composition in

molybdenum oxide and, to a lesser extent, in bismuth oxide is observed; at pH = 2 (at pH =2–5 in [15]), the change in the

bulk composition relative to the nominal one is not as significant as at other pH values.

The change in the bulk chemical composition relative to the nominal one is due to the different solubility of the

components of the amorphous precursor at different hydrothermal fluid pH values, which leads to their redistribution

between the dispersed phase and the dispersion medium of the amorphous precursor suspension subjected to hydrothermal

treatment. For this reason, some components may remain dissolved in the cooled mother liquor and will be removed from

the system during further rinsing of the sediment.

It is important to note that in the samples obtained at pH = 2, 4 and 6, a noticeable amount of sodium is detected,

while in other samples it is absent even in trace amounts.
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TABLE 1. Bulk chemical composition of samples synthesized by the hydrothermal method, in rel. at.

units, according to the EDXMA data

Sample
Bi/Mo Fe/Mo Bi/Fe Na/Mo

Nom.a Bulk Nom.a Bulk Nom.a Bulk Nom.b Bulk

1 0.55 0.14 3.93 –

2 0.53 0.29 1.83 0.26

Bi0.50Fe0.37MoO4.31 pH
4

0.50
0.55

0.37
0.15

1.35
3.67

–
0.38

6 1.05 0.36 2.92 0.23

8 3.09 2.79 1.11 –

10 4.67 4.59 1.02 –

1 0.92 0.37 2.49 –

2 0.75 0.54 1.39 0.24

Bi0.84Fe0.56MoO5.10 pH
4

0.84
0.78

0.56
0.38

1.50
2.05

–
0.24

6 1.08 0.48 2.25 0.22

8 3.39 3.05 1.11 –

10 4.32 4.73 0.91 –

a
Nominal composition specified for the synthesis.

b
Not specified for the synthesis.

The relative error for the Bi/Mo, Fe/Mo, Bi/Fe, and Na/Mo ratios does not exceed 7, 4, 6, and 8 %, respectively.

3.2. XRD analysis

Powder XRD patterns of samples synthesized by the hydrothermal method are shown in Fig. 1 (nominal composi-

tion – Bi0.50Fe0.37MoO4.31) and Fig. 2 (nominal composition – Bi0.84Fe0.56MoO5.10). The change in the bulk chemical

composition of samples obtained at different hydrothermal fluid pH values, which was discussed in Section 3.1, leads to

a change in their phase composition. The phase composition analysis of the samples, the results of which are presented

below, was performed taking into account the data obtained using SEM and local EDXMA (for details see Section 3.3).

In the XRD patterns of the samples obtained at pH = 2 (nominal composition – Bi0.84Fe0.56MoO5.10) and 4, reflec-

tions of only one phase are observed – NaBi(MoO4)2 (PDF-2 No. 88-242), which crystallizes in the tetragonal syngony

and has a scheelite-like structure (sp. gr. I 4̄, No. 82). However, the bulk composition of these samples contains a no-

ticeable amount of iron, which, apparently, cannot be attributed to the composition of the amorphous phase, since it is

not observed in the samples, due to the absence of signs of an amorphous halo in the XRD patterns. Taking into account

the data presented in Section 3.3, it can be concluded that these samples contain only a crystalline phase of variable

composition, which is a four-component complex oxide (sodium bismuth iron molybdate) with a scheelite-like structure,

apparently, not previously described in the scientific literature. It can be assumed that in the structure of these compounds,

the Fe3+ cations are located in the same octahedrally coordinated positions as the Mo6+ cations, however, a detailed

description of the crystal structure of the compounds obtained for the first time will be the subject of further research on

this topic. It should be noted that the unit cell parameters (UCP) of the indicated compounds change with a change in

their composition, and, apparently, the key factor influencing this is the amount of “large” Bi3+ cations, the increase of

which is accompanied by an increase in UCP. The calculation of the mean crystallite sizes of the indicated compounds

using the Scherrer formula was performed only for single-phase samples obtained at pH = 2 (nominal composition –

Bi0.84Fe0.56MoO5.10) and 4, since for other samples a superposition of the reflections of the scheelite-like phase with the

reflections of the phases coexisting with it was observed. The mean crystallite sizes of the scheelite-like phase, calculated

using the Scherrer formula, were: ∼25 nm – pH = 2 (nominal composition – Bi0.84Fe0.56MoO5.10); ∼31 nm – pH = 4

(nominal composition – Bi0.84Fe0.56MoO5.10); ∼51 nm – pH = 4 (nominal composition – Bi0.50Fe0.37MoO4.31).

In addition to the reflections of the above-described scheelite-like phase, the XRD pattern of the sample obtained at

pH = 2 (nominal composition – Bi0.50Fe0.37MoO4.31) contains reflections of the Fe2(MoO4)3 phase (PDF-2 No. 35-183);

obtained at pH = 6 (nominal composition – Bi0.50Fe0.37MoO4.31) – the Bi2MoO6 phase (PDF-2 No. 84-787); obtained

at pH = 6 (nominal composition – Bi0.84Fe0.56MoO5.10) – the Bi2MoO6 (PDF-2 No. 84-787) and Fe2(MoO4)3 (PDF-2

No. 35-183) phases. In the XRD patterns of the samples obtained at pH = 1, 8 and 10, reflections of the new scheelite-like

phase are not observed, as well as the presence of sodium in the bulk composition of these samples is not detected. This
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indicates that only the scheelite-like phase is formed with the participation of sodium, while sodium is not included in the

composition of other forming oxide phases, despite the presence of this component in excess in the reaction system.

In the XRD patterns of the samples obtained at pH = 1, reflections of the Fe2Mo3O12 (PDF-2 No. 80-195),

Bi2Mo3O12 (PDF-2 No. 21-103) and Bi3(FeO4)(MoO4)2 (PDF-2 No. 70-31) phases are observed. The XRD pat-

terns of the samples obtained at pH = 8 and 10 show reflections of a bismuth oxide-enriched phase with the com-

position Bi3.65−4.30Fe0.37−0.45MoOz (for details see Section 3.3), which is isostructural to the δ–Bi2O3 phase (sp.

gr. Fm3̄m, No. 225, PDF-2 No. 16-654), and, with the exception of the case of pH = 10 (nominal composition –

Bi0.50Fe0.37MoO4.31), reflections of other unknown phases are observed, which could not be identified.

It is worth mentioning that the formation in alkaline media of a three-component fluorite-type solid solutions of

similar composition, has already been observed in a study of the Bi2O3–Fe2O3–WO3 system [15]. However, it is im-

portant to note that the obtained samples do not contain a phase with a pyrochlore structure, the formation of which was

previously observed in the Bi2O3–Fe2O3–WO3 and Na2O–Bi2O3–Fe2O3–WO3 systems [12, 13], despite the use of a

similar synthesis procedure and despite a similar electronic structure of the Mo6+ and W6+ cations.

FIG. 1. Powder XRD patterns of samples synthesized by the hydrothermal method (nominal composi-

tion – Bi0.50Fe0.37MoO4.31)

3.3. SEM

The SEM data for the samples synthesized by the hydrothermal method are shown in Fig. 3 and Fig. 4. In the sam-

ple obtained at pH = 2 (nominal composition – Bi0.84Fe0.56MoO5.10) (Fig. 3b), large agglomerates (∼5 – 20 µm) are

observed, the shape of which is close to spherical, composed of grown together plate-like particles (thickness (h) ∼50 –

150 nm), often having a curved shape. In the voids between the plate-like particles, smaller particles can be found, which

makes it practically impossible to identify the composition of particles of different morphological motifs (plate-like and

smaller particles) using local EDXMA. In the sample obtained at pH = 4 (nominal composition – Bi0.84Fe0.56MoO5.10)
(Fig. 3d), particles of two morphological motifs are observed: (1) conditionally spherical particles (∼0.5 – 1.5 µm) and

(2) rod-shaped particles (h ∼1 µm and length (l) ∼ 10 µm), as well as agglomerates of these particles (1 and 2). In the

back-scattered electron (BSE) detection mode, it can be observed that the particles of the two morphological motifs have

the same brightness, which indicates a fairly uniform distribution of different type atoms throughout the sample volume.

In addition, local EDXMA data show that the spherical particles have the composition Na0.19Bi0.81Fe0.31MoO4.78, while

the rod-shaped particles – Na0.30Bi0.85Fe0.22MoO4.76, and these atomic ratios are close to the bulk chemical composi-

tion of this sample. In the sample obtained at pH = 4 (nominal composition – Bi0.50Fe0.37MoO4.31) (Fig. 3c), one can

also observe particles of two morphological motifs: (3) conventionally cubic particles (∼2 µm), which are aggregates of

smaller particles also having a cubic shape, and (4) aggregates of plate-like particles (h ∼ 150 – 200 nm), grown together

with flat sides (“in a stack”). Studies in the BSE mode, as well as local EDXMA data, show that the compositions of

particles with different morphologies are similar to each other: cubic particles – Na0.30Bi0.58Fe0.14MoO4.23; aggregates
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FIG. 2. Powder XRD patterns of samples synthesized by the hydrothermal method (nominal composi-

tion – Bi0.84Fe0.56MoO5.10)

of plate-like particles – Na0.47Bi0.42Fe0.15MoO4.09, and the indicated atomic ratios are close to the bulk chemical com-

position of this sample. Taking into account the fact that the XRD patterns of the three described samples show reflections

of only the scheelite-like phase, it can be concluded that compounds of this structural type were synthesized in the form

of particles with different morphology and quantitative chemical composition, which is observed both when comparing

different samples with each other, and in each of them. The formation of particles of scheelite-like compounds of two

morphological motifs and with slightly different quantitative chemical compositions within a sample could be due to one

of the following two reasons. The first reason may be that the reaction system has not reached a state of thermodynamic

equilibrium, the achievement of which may be complicated, for example, by the fact that the reacting components are

not distributed homogeneously enough throughout the volume of the reaction space, which prevents their direct contact

and further interaction. This is a typical problem when using “traditional” methods of mixing the reaction system (mag-

netic/blade stirrer, etc.), which provide low micro-mixing quality [16]. The second reason may be related to the fact that

the reaction system has reached a state of thermodynamic equilibrium, but in this region of chemical compositions at the

synthesis temperature and pressure, there is a region of two-phase equilibrium in which two isostructural solid solutions

with slightly different quantitative compositions coexist.

The sample obtained at pH = 2 (nominal composition – Bi0.50Fe0.37MoO4.31) (Fig. 3a) contains particles of two

morphological motifs: (5) large agglomerates of various shapes and sizes, composed of grown together curved plate-like

particles (h ∼50 – 150 nm), and (6) particles resembling a bar or beam (h ∼5 µm and l ∼20 – 30 µm), often collected in

aggregates of various shapes. In the BSE mode, particles (5) are noticeably lighter than particles (6), while according to

the local EDXMA data, particles (5) have the composition Na0.25Bi0.60Fe0.18MoO4.30; particles (6) have the composition

Fe2Mo3O12, which is close to the composition of the known compound (PDF-2 No. 35-183).

In the sample obtained at pH = 6 (nominal composition – Bi0.50Fe0.37MoO4.31) (Fig. 4a), two morphological motifs

are observed: (i) flat plate-like particles (h ∼100 nm), growing together at right angles into large, conditionally isometric

agglomerates (∼2 – 5 µm), and (ii) aggregates of conditionally isometric particles having the shape of a rectangular

parallelepiped (h ∼0.6 – 0.8 µm) with a square base (∼2 – 3 µm). The sample obtained at pH = 6 (nominal composition

– Bi0.84Fe0.56MoO5.10) (Fig. 4b) also contains particles of two morphological motifs: (i) large particles resembling an

elongated spheroid (h ∼2 – 3 µm and l ∼5 – 10 µm), and (ii) smaller particles “scattered” over these large particles (i),

and also forming separate large agglomerates of a conditionally isometric shape (∼5 – 10 µm). In these samples (pH = 6),

it is practically impossible to identify the composition of particles of different morphological motifs using local EDXMA

due to their close contact.

In the sample obtained at pH = 8 (nominal composition – Bi0.50Fe0.37MoO4.31) (Fig. 4c), three morphological

motifs are observed: (7) octahedral particles (∼2 – 4 µm), (8) rod-shaped particles (h ∼0.3 – 1 µm and l ∼5 – 30 µm)

and (9) agglomerates of different sizes without a clearly defined morphology. In the BSE mode, particles (7) and (8)
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FIG. 3. SEM images of samples synthesized by the hydrothermal method: nominal composition –

Bi0.50Fe0.37MoO4.31 ((a) pH = 2, (c) pH = 4); nominal composition – Bi0.84Fe0.56MoO5.10 ((b) pH = 2,

(d) pH = 4)

FIG. 4. SEM images of samples synthesized by the hydrothermal method: nominal composition –

Bi0.50Fe0.37MoO4.31 ((a) pH = 6, (c) pH = 8); nominal composition – Bi0.84Fe0.56MoO5.10 ((b) pH = 6,

(d) pH = 10)
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are noticeably lighter than particles (9), while according to the local EDXMA data, particles (7) have the composition

Bi3.65Fe0.45MoO9.15; particles (8) – Bi2.76Fe0.31MoO7.61; particles (9) – Bi3.67Fe9.45MoO22.68. A similar tendency is

observed in the case of the sample obtained at pH = 10 (nominal composition – Bi0.84Fe0.56MoO5.10) (Fig. 4d), except

that the amount of octahedral particles (7) in relation to rod-shaped particles (8) becomes significantly greater. Apparently,

the octahedral particles, which have a composition highly enriched in bismuth oxide, are fluorite-type solid solutions that

are isostructural to the δ-Bi2O3 phase (sp. gr. Fm3̄m, No. 225). However, in the crystallographic database PDF-2 it

is not possible to find a known compound whose composition would be close to the composition of iron oxide-enriched

particles (9), which complicates the phase analysis of these samples.

4. Conclusion

It is shown that the hydrothermal fluid pH has a key effect on the processes of phase formation in the Na2O–Bi2O3–

Fe2O3–MoO3 system, determining the chemical and phase composition, as well as the size parameters and morphology

of crystallites and particles of hydrothermal synthesis products (T = 170 ◦C and P < 7 MPa).

The discovered tendency in the change in the bulk chemical composition relative to the used nominal compositions

(Bi0.50Fe0.37MoO4.31 and Bi0.84Fe0.56MoO5.10) with a change in the hydrothermal fluid pH resembles that established

earlier in the study of the Bi2O3–Fe2O3–WO3 system [15]: in the region of acidic pH, a depletion of the bulk chemical

composition in iron oxide is observed, while in the region of alkaline pH, a depletion of the bulk chemical composition

in molybdenum oxide and, to a lesser extent, in bismuth oxide is observed; at pH = 2 (at pH = 2–5 in [15]), the change in

the bulk composition relative to the nominal one is not as significant as at other pH values.

It is shown that in the pH range from 2 to 6 new compounds of variable composition

(Na0.19−0.47Bi0.42−0.85Fe0.14−0.31MoOy) with a scheelite-like structure (sp. gr. I 4̄, No. 82) are formed, which have

not been previously described in the scientific literature. The discovered compounds are isostructural with the known

compound NaBi(MoO4)2 (PDF-2 No. 88-242) and, apparently, are formed by isomorphic substitution of some amounts

of octahedrally coordinated Mo6+ cations by Fe3+ cations. It was found that the unit cell parameters (UCP) of these

compounds change with a change in their composition, and, apparently, the key influence on this is the number of “large”

Bi3+ cations, the increase of which is accompanied by an increase in the UCP. An increase in the hydrothermal fluid pH

from 2 to 4 leads to an increase in the mean crystallite sizes of the scheelite-like phase, calculated using the Scherrer

formula, from ∼25 to ∼30 – 50 nm. The particles of these compounds are polycrystalline, and have different morphology

and quantitative chemical composition, which is observed both when comparing different samples with each other, and

in each of them. It is shown that the “flower-like” agglomerates of particles formed at pH = 2 have the most developed

surface and are grown together plate-like particles (h ∼50 – 150 nm), often having a curved shape, while with an increase

in pH, the formation of “denser” aggregates with a significantly smaller number of voids is observed.

It has been shown that fluorite-type solid solutions (Bi3.65−4.30Fe0.37−0.45MoOz) (isostructural with the oxide δ-

Bi2O3 (sp. gr. Fm3̄m, No. 225)) are formed in the region of alkaline pH, the particles of which have a clear octahedral

habit, which was previously observed in the study of the Bi2O3–Fe2O3–WO3 system [15].

It was established that the obtained samples do not contain a phase with a cubic pyrochlore structure, the formation

of which was previously observed in the Bi2O3–Fe2O3–WO3 and Bi2O3–Na2O–Fe2O3–WO3 systems [12, 13], despite

the use of a similar synthesis procedure and despite a similar electronic structure of the Mo6+ and W6+ cations.
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ABSTRACT Composite films were synthesized by radical copolymerization of styrene with methacrylate groups

on the surface of modified single-walled carbon nanotubes. Mechanical grinding and reforming of films on

the electrode led to a decrease in the electrical resistance values by two magnitude orders. This effect was

observed when measuring the current-voltage characteristics in both sandwich and planar structures. This

decrease in the electrical resistance of the composite films is likely due to the disintegration and reorientation

of carbon nanotubes, as well as the creation of mechanical stresses in them as a result of covalent bonding to

the polymer matrix, which could affect the electronic structure of carbon inclusions.
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1. Introduction

Research concerning the electrical conductivity of single-walled carbon nanotubes (SWCNTs) was intensively car-

ried out in recent decades, including for their use as fillers in polymer composites for flexible electronics and other

applications [1–5]. It is known that the conductivity values for SWCNTs can vary from dielectric and semiconducting

to metallic, depending on the method of their preparation, axial ratio and surface modification [6–11]. The introduction

of disaggregated SWCNTs in quantities sufficient for percolation, even into high-resistivity polymers, made it possible

to obtain composites with high electrical conductivity values, up to 57 S/cm [12]. Yoon H. and colleagues [13] investi-

gated which method of dispersing millimeter-long SWCNTs was the most effective for obtaining composites with high

electrical conductivity characteristics based on fluorinated rubber and polystyrene (PS). The authors used a total of 11 ap-

proaches to disperse SWCNTs in methyl isobutyl ketone, which were based on three mechanisms of action: turbulent flow

(nanomizer, high-pressure jet mill), cavitation (probe sonicator) and mechanical forces (ball-mill, bead-mill, paint shaker,

ball collision-mill, cone-mill, high shear batch disperser, thin-film spin mixer, rotor-mill). The comparative analysis of

dispersion methods presented in [13] showed that the highest average electrical conductivity of SWCNTs in a fluorine

rubber film was 33 S/cm and was achieved by grinding the filler in a turbulent solvent flow, preceding it mixing with the

polymer, molding and drying of the composite film. In turn, ultrasonic and mechanical effects on the dispersion of SWC-

NTs in methyl isobutyl ketone made it possible to obtain polymer composites with lower electrical conductivity of 20

and 8 S/cm, respectively. For polystyrene-based samples, the trend of changes in the electrical conductivity of SWCNTs

depending on the method of their dispersion remained unchanged [13]. Thus, an increase in the electrical conductivity of

the composites was achieved due to the homogeneous distribution of SWCNTs during their dispersion in a turbulent flow,

which allowed one to form a branched network of conducting channels of large range with a minimum number of breaks

in the polymer matrix. In work [14], in order to avoid severe destruction of SWCNTs under the influence of ultrasound,

the authors resorted to their mechanical grinding and found that this led to an increase in the electrical conductivity of

nanotubes in films where ethyl cellulose acts as a binder. The electrical conductivity of the composite films depended on

SWCNTs grinding duration (5, 15, 60 min) and their concentration relative to the binder (1:1, 1:10, 1:50). An increase in

the grinding time of SWCNTs from 15 to 60 minutes had a negative effect on the electrical conductivity of the composite

films, which was associated, in the authors opinion, with excessive aeration of the filler during the crushing process. A

clear explanation for the higher electrical conductivity of ethylcellulose films with SWCNTs subjected to five-minute

grinding in comparison with similar compositions based on uncrushed carbon filler was not given in this work. Another

study [15] was devoted to comparing theoretical and experimental data on the electrical conductivity of SWCNTs with

different lengths and axial ratios. Theoretical calculations showed that longer SWCNTs in polymers should have better

© Nikolaeva M.N., Ivan’kova E.M., Bugrov A.N., 2025
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conductivity, while the experimentally obtained electrical conductivity values for short and long nanotubes were in the

same range (104 ÷ 10
8 S/m).

Uniform distribution and a decrease in the aggregation degree of SWCNTs can be achieved not only by dispersion,

but also by using their surface functionalization. To do this, during the oxidation process, the SWCNT framework was

damaged by strong acids, oxidizing agents, ozone or plasma, which resulted in the generation of oxygen-containing func-

tional groups, such as hydroxyl, carboxyl and ester [16, 17]. These groups were subsequently used for silanization [18],

esterification [19] of SWCNTs and grafting of polymers onto them [20]. It should be noted that in works [8,21,22], the au-

thors discovered growth in the number of charge carriers and an increase in the electrical conductivity of SWCNTs during

their oxidation. Moreover, some articles [23,24] talk about the manifestation of the superconductivity effect in SWCNTs,

which can also make a significant contribution to reducing the electrical resistance of the composite material. Similar

effects was previously observed for another allotropic modification of carbon, namely reduced graphene oxide (rGO),

when its sheets were deformed and mechanical stresses were created in them during copolymerization with styrene, that

led to the appearance of local areas with abnormally low electrical resistance and the manifestation of superconducting

properties in the samples up to room temperatures [25–27]. In the present work, we study the influence of the SWCNT’s

surface functionalization process with methacrylate groups, their subsequent copolymerization with styrene, precipitation

conditions, disintegration and formation of a polymer composite coating on the conductive properties of 1D carbon filler.

2. Experimental

The studied single-walled carbon nanotubes (obtained from OCSiAl) according to the manufacturer have a length of

more than 5 µm, an outer average diameter of 1.4 ± 0.3 nm and a specific surface area of about 400 m2/g.

SWCNTs taken in their original form were functionalized with methacrylate groups using the organosilicon compound

3-(trimethoxysilyl)propyl methacrylate (TMSPM) (Sigma-Aldrich, CAS number 2530-85-0, purity >98 %) according

to the method described in detail in [28]. After removing unreacted TMSPM from the alcohol dispersion of modified

SWCNTs by repeated washing with ethanol and drying the resulting powder in an air to constant weight, the fact of

grafting of the organosilicon modifier to the carbon filler was confirmed using FTIR spectroscopy (Vertex 70 spec-

trometer, Bruker, Germany). The transmission spectrum of a KBr tablet with original SWCNTs (Fig. 1a) contained

barely noticeable bands at 1730 (stretching vibrations of C=O groups), 1510 (skeletal vibrations of C=C bonds) and

1250 cm−1 (stretching vibrations of C–O groups, corresponding to internal defects of carbon nanotubes) [29, 30]. After

modification of SWCNTs using TMSPM, bands appear in the FTIR spectrum (Fig. 1b) at 1720 (stretching vibrations of

C=O groups), 1634 (C=C groups), 1270 (Si–CH3 bonding), 1190 (Si–O–CH3 vibrations), 1096 (Si–O–Si antisymmetric

stretching) cm−1, that indicates the presence of an organosilicon modifier on the surface of the carbon filler [31, 32].

Another indirect confirmation of the successful modification of the surface of carbon nanotubes was an increase in their

diameter after treatment with TMSPM. It should be noted that the smallest diameter of original SWCNTs recorded us-

ing a SUPRA 55 VP scanning electron microscope (Carl Zeiss, Germany) was about 4 nm (Fig. 2a), while after their

functionalization it approximately doubled (Fig. 2b).

FIG. 1. FTIR spectra of SWCNTs before (a) and after (b) treatment with TMSPM

Next, the functionalized SWCNTs were dispersed in a styrene–toluene solution (1:1) and copolymerized in an inert

atmosphere with the monomer for 20 hours, using azobisisobutyronitrile (1 wt. % of the polymer weight) as an initiator.

The content of SWCNTs in the synthesized composite was 1 wt. %. The average molecular weight of polystyrene under

the selected polymerization conditions was about 9000 Da. The resulting composite was precipitated in ethanol and, after
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(a) (b)

FIG. 2. SEM micrographs of original (a) and TMSPM-modified (b) SWCNTs

drying, divided into 2 parts. One part was left unchanged (original), the other part was mechanically crushed in a vibrator

ball mill (DDR-GM 9458, 30 W, 50 Hz, Germany) for 2 hours to a powdery state.

The current-voltage characteristics of the composites were measured in two ways: 1) in the geometry of the sandwich

structure; 2) in the planar geometry. To obtain current-voltage characteristics (CVCs) in metal/composite/metal sandwich

structures, the samples were deposited onto copper electrodes from their 1 % solutions in benzene. The area of the copper

electrodes used to measure electrical conductivity of the composites in sandwich structures was 1 cm2. The thickness

of the films deposited on the electrodes for CVCs measuring was from 2 to 10 µm, and the temperature dependencies

of the electrical resistance were obtained for the samples of 2 and 3 µm. The thickness of the composite coating was

estimated using a Solver P-47 PRO (NT-MDT) scanning probe microscope. CVCs and temperature dependencies of the

electrical resistance in metal electrode/composite/metal electrode sandwich structures were obtained by 4-probe method

as in [25, 33]. The probe contacts were soldered into the current electrodes. In this case, the voltage drops across the

electrodes at the maximum current used in the experiment was less than the sensitivity of the voltmeter, i.e. 100 nV. The

following devices were used in electrical measurements: universal voltmeter V7-78/1, multimeter RS-232C, combined

digital device Shch-300, DC power supply B5-90.

To measure CVCs in planar structures, the composites were deposited on glass substrate from a mixture of ben-

zene/petroleum ether solvents taken in a ratio of 1:1 by volume. To prepare solutions, chemical pure benzene (chemical

pure, ECOS-1, Russia) and petroleum ether 40 – 70 (chemical pure, ECOS-1, Russia) were used. Previously, it was

shown [33] that this ratio allowed the maximum separation of rGO and polystyrene and promoted the maximum enlarge-

ment of carbon clusters on the polymer surface. To obtain sufficiently large SWCNT structures on the polystyrene surface

deposited from a mixture of benzene and petroleum ether, solutions were prepared with a composite content of about

30 wt. %. For the film obtained from a non-disintegrated composite, the length of SWCNT formations emerging on the

polystyrene surface reached 500 µm (Fig. 3a). At the same time, on the surface of the film formed on a glass substrate

from the composite crushed to a powder state, SWCNT aggregates with a size of 20 – 30 µm were observed (Fig. 3b).

Such sizes of inclusions made it possible to measure their electrical resistance on the surface of the polymer using the

copper electrodes with an area of 10 µm2.

3. Results and discussion

Since PS is a dielectric, it is an ideal matrix for studying the electrical conductivity of a component with lower

resistance, such as SWCNTs. Composite coatings of uncrushed and disintegrated PS films with SWCNTs formed on a

glass substrate using a mixed solvent were heterogeneous in their electroconductive properties. Low electrical resistance

was observed only in some small (up to hundreds of micrometers) areas of composites, while most of their surface

remained high-resisted or has electroconductivity corresponding to semiconductors. When the electrodes were separated

by more than 1 cm, the electrical resistance of the composite film exceeded 30 MΩ, since the low concentration of

SWCNTs (1 wt. %) in the PS did not allow the formation of extended electroconductive channels in the near-surface

layer of the dielectric matrix. The metallic type of conductivity was recorded only for individual areas of the composite

film (Fig. 4), where the SWCNTs came out onto the PS surface. The length of such areas corresponded to the sizes

of the agglomerates observed in the SEM micrographs of cross-sections of the composite films (Fig. 3c). It is obvious

that the structural features of the aggregates and the relative arrangement of the SWCNTs in the PS film formed using a

mixed solvent of benzene/petroleum ether determine the electrical resistance values of its areas. Low values of electrical
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(a) (b)

(c) (d)

FIG. 3. SEM micrographs obtained at different magnifications of the surface of the films formed from

the original (a, c) and disintegrated (b, d) composites on the glass substrate (a, b), as well as images of

their transverse cleavages (c, d)
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resistance at the distance between electrodes, down to 50 µm, were recorded in planar structures both for films formed

from uncrushed composite and those obtained from the pre-disintegrated sample (Fig. 4). It is shown that the absolute

values of electrical resistance of agglomerates from disintegrated SWCNTs in the PS matrix can be even lower than that

of metal. It would be logical to expect better electrical conductivity in the case of the composite films with uncrushed

SWCNTs, when their structure was not damaged and there were fewer edge defects, which should obviously appear

when the nanotubes were disintegrated. However, in the case of disintegrated SWCNTs, the electrical resistance in planar

structures was 2 orders of magnitude lower than that of the composite films based on uncrushed ones. Apparently, the

reduction in the electrical resistance of the films was facilitated by the special self-organization of individual SWCNT

fragments into aggregates that acted as conducting channels in the dielectric matrix.

FIG. 4. CVCs at 298 K in planar-structures of composite films based on PS with original (sample 1,

R = 1.4 Ω) and disintegrated SWCNTs (sample 2, R = 0.08 Ω); distance between electrodes 50 µm

To measure the electrical conductivity of the composites in sandwich structures, the films with a thickness from 2

to 10 µm were formed on the copper electrodes from benzene. In this case, SWCNTs covalently bonded to PS were

uniformly distributed and did not form large aggregates in the polymer matrix (Fig. 3b). The electrically conductive

properties of the composite films were determined by their thickness depending on the length of the SWCNTs. The films

obtained from the pre-disintegrated PS samples with SWCNTs showed low electrical resistance values at a thickness of

up to several micrometers (Fig. 5), and over 5 µm they became completely insulating. This can be explained by the

fact that during grinding, the length of some part of individual SWCNTs was shortened, and they ceased to provide

electrical conductivity at a film thickness much greater than their linear dimensions. Thus, for disintegrated SWCNTs

in sandwich structures, low electrical resistance was maintained only at small film thicknesses, comparable to the sizes

of the conducting channels they form (Fig. 3d). For the films based on PS with uncrushed SWCNTs, the electrical

conductivity was maintained even at a thickness of 10 µm. However, if we compare thin films obtained from uncrushed

and disintegrated composites, the absolute values of electrical conductivity for the latter will be significantly higher

(comparison of sample 1 and 2 in Fig. 5).

FIG. 5. CVCs at 298 K in sandwich-structures of composite films based on PS with original (sample

1, R = 1.4 kΩ) and disintegrated SWCNTs (sample 2, R = 14 Ω); distance between the electrodes

2 µm

The metallic nature of the electrical conductivity of SWCNTs in PS films formed from the original and disintegrated

parts of the polymer composite was also confirmed by the temperature dependencies of the resistance (Fig. 6). Thus, at

298 K the electrical resistance of the SWCNTs was 220 kΩ, at 280 K it was already 650 kΩ, and at 273 K it was 1 MΩ.

In addition, the electrical resistance of the films obtained from the disintegrated PS composites with SWCNTs dropped

by approximately 100 times when the temperature was reduced from room to liquid nitrogen temperature (Fig. 6, sam-

ple 2). For the samples 2 and 3 at low temperatures, electrical resistance of copper level was observed in the experiment.
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Therefore, for clarity, a comparative analysis of the temperature dependences of the resistance of the PS samples with the

original and disintegrated SWCNTs was carried out with a film thickness of 3 µm (Fig. 6).

FIG. 6. Temperature dependencies of the electrical resistance of the composite films based on PS with

original (sample 1, film thickness 3 µm) and disintegrated SWCNTs (sample 2, film thickness 3 µm;

sample 3, film thickness 2 µm) measured in planar structures in comparison with copper

4. Conclusions

For the films deposited from solutions of original and disintegrated polymer composite obtained by radical polymer-

ization of styrene with SWCNTs, the current-voltage characteristics and the temperature dependencies of the resistance

have been measured. The obtained data have demonstrated a decrease in resistance and a metallic type of conductivity in

certain areas of the nanotube aggregates’ surface. It has been determined that the grinding of SWCNTs leads to a decrease

in their resistance in planar structures in separate areas by two orders of magnitude compared to original ones. Also, when

using thin films of the composite with a thickness of up to 2 µm in sandwich structures, the electrical resistance values of

the disintegrated polymer composite turned out to be lower by two orders of magnitude comparing to original composite.

Thus, we can conclude that mechanical grinding of the composite material leads to the fragmentation of SWCNTs,

and, consequently, to a change in the arrangement of the carbon filler in the network of conducting channels. We believe

that, to varying degrees, both of these factors may contribute to the decrease in a local conductivity of the composite

material based on polystyrene and SWCNTs observed in this work.
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