Skyrmionium – semicircular magnetic defect interaction on a racetrack
https://doi.org/10.17586/2220-8054-2024-15-5-597-620
Abstract
Different types of skyrmionics magnetic configurations can be created and manipulated on different types of nanostructures. In this research, we use micromagnetic simulations to study the dynamics of a skyrmionium on a racetrack in the presence of a semicircular magnetic defect. We considered a defect with physical parameters different from those of the racetrack itself. Our results show that, depending on the size of the defect, the width of the racetrack, and the intensity of the spin current density, it is possible to manipulate the trajectory of a skyrmionium. Also, we obtain the interaction energies between the skyrmionium and the magnetic defect and derive phase diagrams showing the different dynamic states that can be obtained during the movement of the skyrmionium.
About the Authors
S. Navarro-VilcaPeru
Sebastian Rodrigo Navarro Vilca – Departamento de F´ısica Aplicada
Avenida Miraflores, S/N, Ciudad Universitaria, Tacna 23003
S. Urcia-Romero
United States
Silvana Rocio Urcia Romero – Department of Physics
Puerto Rico 00681
H. Vigo-Cotrina
Peru
Helmunt Eduardo Vigo Cotrina – Grupo de Investigacion en Ciencias Aplicadas y Nuevas Tecnologıas
Trujillo
References
1. Gobel B., Mertig I., Tretiakov O.A. Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles. ¨ Physics Reports, 2021, 895, P. 1–28.
2. Jin C., Song C., Wang J., Liu Q. Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect. Applied Physics Letters, 2016, 109 (18), 182404.
3. Gobel B., Sch ¨ affer A.F., Berakdar J., Mertig I., Parkin S.S. Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a ¨ racetrack device. Scientific reports, 2019, 9 (1), 12119.
4. Li S., Xia J., Zhang X., Ezawa M., Kang W., Liu X., Zhou Y., Zhao, W. Dynamics of a magnetic skyrmionium driven by spin waves. Applied Physics Letters, 2018, 112 (14), 142404.
5. Novak R.L., Garcia F., Novais E.R.P., Sinnecker J.P., Guimaraes A.P. Micromagnetic study of skyrmion stability in confined magnetic structures with perpendicular anisotropy. J. of Magnetism and Magnetic Materials, 2018, 451, P. 749–760.
6. Beg M., Carey R., Wang W., Cortes-Ortu ´ no D., Vousden M., Bisotti M. A., Albert M., Chernyshenko D., Hovorka O., Stamps R.L., Fangohr ˜ H. Ground state search, hysteretic behaviour, and reversal mechanism of skyrmionic textures in confined helimagnetic nanostructures. Scientific Reports, 2015, 5 (1), 17137.
7. Ponsudana M., Amuda R., Madhumathi R., Brinda A., Kanimozhi N. Confinement of stable skyrmionium and skyrmion state in ultrathin nanoring. Physica B, 2021, 618, 413144.
8. Zhang X., Xia, J., Zhou Y., Wang, D., Liu X., Zhao, W., Ezawa M. Control and manipulation of a magnetic skyrmionium in nanostructures. Physical Review B, 2016, 94 (9), 094420.
9. Tejo F., Riveros A., Escrig J., Guslienko K.Y., Chubykalo-Fesenko O. Distinct magnetic field dependence of Neel skyrmion sizes in ultrathin ´ nanodots. Scientific Reports, 2018, 8 (1), 6280.
10. Jiang W., Zhang X., Yu G., Zhang W., Wang X., Benjamin Jungfleisch M., Pearson J.E., Heinonen O., Wang K.L., Zhou Y., Hoffmann A., Te Velthuis S.G. Direct observation of the skyrmion Hall effect. Nature Physics, 2017, 13, P. 162–169.
11. Yanes R., Garcia-Sanchez F., Luis R.F., Martinez E., Raposo V., Torres L., Lopez-Diaz L. Skyrmion motion induced by voltage-controlled in-plane strain gradients. Applied Physics, 2019, 115 (13), 132401.
12. Zhu H., Xiang G., Feng Y., Zhang X. Dynamics of elliptical magnetic skyrmion in defective racetrack. Nanomaterials, 2024, 14 (3), 312.
13. Sampaio J., Cros V., Rohart S., Thiaville A., Fert A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature Nanotechnology, 2013, 8 (11), P. 839–844.
14. Fert A., Cros V., Sampaio J. Skyrmions on the track. Nature Nanotech., 2013, 8 (3), P. 152–156.
15. Lima Fernandes I., Bouaziz J., Blugel S., Lounis S. Universality of defect-skyrmion interaction profiles. ¨ Nature Communication, 2018, 9 (1), 4395.
16. Toscano D., Leonel S.A., Coura P.Z., Sato F. Building traps for skyrmions by the incorporation of magnetic defects into nanomagnets: Pinning and scattering traps by magnetic properties engineering. J. of Magnetism and Magnetic Materials, 2019, 480, P. 171–185.
17. Lin J.Q., Chen J.P., Tan Z.Y., Chen Y., Chen Z.F., Li W.A., Gao X.S., Liu J.M. Manipulation of Skyrmion Motion Dynamics for Logical Device Application Mediated by Inhomogeneous Magnetic Anisotropy. Nanomaterials, 2022, 12 (2), 278.
18. Toscano D., Mendonc¸a J.P.A., Miranda A.L.S., de Araujo C.I.L., Sato F., Coura P.Z., Leonel S.A. Suppression of the skyrmion Hall effect in planar nanomagnets by the magnetic properties engineering: Skyrmion transport on nanotracks with magnetic strips. J. of Magnetism and Magnetic Materials, 2020, 504, 166655.
19. Kolesnikov A.G., Stebliy M.E., Samardak A.S., Ognev A.V. Skyrmionium–high velocity without the skyrmion Hall effect. Scientific Reports, 2018, 8 (1), 16966.
20. Zheng F., Li H., Wang S., Song D., Jin C., Wei W., Kovacs A., Zang J., Tian M., Zhang Y., Du H., Dunin-Borkowski R.E. Direct Imaging of a ´ Zero-Field Target Skyrmion and Its Polarity Switch in a Chiral Magnetic Nanodisk. Physical Review Letters, 2017, 119 (9), 197205.
21. Can Onel A., C¸ imen M., Yarimbiyik A.E., Arikan M., Rameev B. Interaction of a magnetic skyrmionium with an engineered defect. ¨ J. of Superconductivity and Novel Magnetism, 2023, 36 (6), P. 1533–1539.
22. Chen R., Li Y., Pavlidis V.F., Moutafis C. Skyrmionic interconnect device. Physical Review Research, 2020, 2 (4), 043312.
23. Song C., Ma Y., Jin C., Wang J., Xia H., Wang J., Liu Q. Field-tuned spin excitation spectrum of kπ skyrmion. New J. of Physics, 2019, 21 (8), 083006.
24. Vigo-Cotrina H., Guimaraes A.P. Creating skyrmions and skyrmioniums using oscillating perpendicular magnetic fields. ˜ J. of Magnetism and Magnetic Materials, 2020, 507, 166848.
25. Ishida Y., Kondo K. Theoretical comparison between skyrmion and skyrmionium motions for spintronics applications. Japanese J. of Applied Physics, 2020, 59, SGGI04.
26. Komineas S., Papanicolaou N. Skyrmion dynamics in chiral ferromagnets. Physical Review B, 2015, 92 (6), 064412.
27. Song C., Jin C., Wang J., Ma Y., Xia H., Wang J., Xia H., Wang J., Liu Q. Dynamics of a magnetic skyrmionium in an anisotropy gradient. Applied Physics Express, 2019, 12 (8), 083003.
28. Jiang A., Zhou Y., Zhang X., Mochizuki M. Transformation of a skyrmionium to a skyrmion through the thermal annihilation of the inner skyrmion. Physical Review Research, 2024, 6 (1), 013229.
29. Kuchkin V.M., Kiselev N.S., Rybakov F.N., Lobanov I.S., Blugel S., Uzdin V.M. Heliknoton in a film of cubic chiral magnet. ¨ Frontiers in Physics, 2023, 11, 1201018.
30. Vigo-Cotrina H., Navarro-Vilca S., Urcia-Romero S. Skyrmionium dynamics on a racetrack in the presence of a magnetic defect. J. of Applied Physics, 2024, 135 (16), 163903.
31. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Van Waeyenberge B. The design and verification of MuMax3. AIP Advances, 2014, 4 (10), 107133.
Supplementary files
![]() |
1. Supplementary information | |
Subject | ||
Type | Other | |
Download
(4MB)
|
Indexing metadata ▾ |
Review
For citations:
Navarro-Vilca S., Urcia-Romero S., Vigo-Cotrina H. Skyrmionium – semicircular magnetic defect interaction on a racetrack. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):597-620. https://doi.org/10.17586/2220-8054-2024-15-5-597-620