Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Fast forward of adiabatic quantum dynamics: an application to planar Dirac systems

https://doi.org/10.17586/2220-8054-2025-16-3-298-305

Abstract

We study a scheme of fast-forward adiabatic quantum dynamics of a (2 + 1) Dirac particle. This scheme was originally proposed by Masuda and Nakamura. In this scheme, we include the adiabatic parameter that maintains the adiabatic motion of the particle and fast forward its motion by introducing a time scaling parameter. The fast forward adiabatic state is obtained by determining the regularization term and driving potential. We introduce the proposed method to the system with the Dirac particle using a (2 + 1) dimensiontime- dependent Dirac equation and obtain the regularization term, the driving scalar potential VFF and the driving vector potential AFF . By tuning the driving electric field, this method can accelerate the adiabatic dynamics of an electron as a Dirac particle trapped in the ground state in the plane xy and an electric field in the x direction and a constant magnetic field in the y direction. This acceleration will preserve the ground state of the wave function from the initial time to the final time.

About the Authors

I. Setiawan
Physics Education Department, University of Bengkulu
Indonesia

Iwan Setiawan - Physics Education Department

Kandang Limun, Bengkulu 38371



R. Ekawita
Physics Department, University of Bengkulu
Indonesia

Riska Ekawita - Physics Department

Kandang Limun, Bengkulu 38371



R. Sugihakim
Institut Teknologi Bandung
Indonesia

Ryan Sugihakim - Theoretical High Energy Physics

Jalan Ganesha 10, Bandung 40132



B. E. Gunara
Institut Teknologi Bandung
Indonesia

Bobby Eka Gunara - Theoretical High Energy Physics

Jalan Ganesha 10, Bandung 40132



References

1. Demirplak M., Rice S.A. Adiabatic population transfer with control fields. J. Phys. Chem. A, 2003, 89, P. 9937.

2. Demirplak M., Rice S.A. Assisted adiabatic passage revisited. J. Phys. Chem. B, 2005, 109, P. 6838.

3. Berry M.V. Transitionless quantum driving. J. Phys A : Math. Theor., 2009, 42., P. 365303.

4. Kato T. On the Adiabatic Theorem of Quantum Mechanics. J. Phys. Soc. Jpn., 1950, 5, P. 435.

5. Berry M.V. Geometric Amplitude Factors in Adiabatic Quantum Transitions. Proc. R. Soc. London Ser. A, 1990, 430, P. 405.

6. N.V. Vitanov et al. Laser-induced population transfer by adiabatic passage techniques. Annu. Rev. Phys. Chem., 2001, 52, P. 763.

7. Albash T., Lidar D.A. Adiabatic quantum computation. Rev. Mod. Phys., 2018, 90, P. 015002.

8. Masuda S., Nakamura K. Fast-forward problem in quantum mechanics. Phys. Rev. A, 2008, 78, P. 062108.

9. Masuda S., Nakamura K. Fast-forward of adiabatic dynamics in quantum mechanics. Proc. R. Soc. A, 2010, 466, P. 1135–1154.

10. Masuda S., Nakamura K. Acceleration of adiabatic quantum dynamics in electromagnetic fields. Phys. Rev. A, 2011, 84(4), P. 043434.

11. Lewis H.R., Riesenfeld W.B. An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic filed. J. Math. Phys A, 1969, 10, P. 1458.

12. Chen X., Ruschhaupt A., del Campo A., GuLery-Odelin D., Muga J.G. Fast optimal frictionless atom cooling a harmonic traps: Shortcut to adiabaticity. Phys. Rev. Lett., 2010, 104, P. 063002.

13. Odelin D.G., Ruschhaupt A., Kiely A., Torrontegui E., Garaot S.M., and Muga J.G. Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys., 2019, 91, P. 045001.

14. Torrontegui E., Ibanez M., Martinez-Garaot M., Modugmo M., del Campo A., Guery-Odelin D., Ruschhaupt A., Chen X., Muga J.G. Shortcut to adiabaticity Adv.At. Mol. Opt. Phys., 2013, 62, P. 117.

15. Chen X., Torrontegui E., and Muga J.G. Lewis-Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A, 2011, 83, P. 062116.

16. Takahashi K. Transitionless quantum driving for spin systems, Phys. Rev. E, 2013, 87, P. 062117.

17. Deffner S., Jarzynski C., and Campo D. Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant Driving. Phys. Rev. X, 2014, 4, P. 021013.

18. Jarzynski C. Generating shortcuts to adiabaticity in quantum and classical dynamics. Phys. Rev. A, 2013, 88, P. 040101(R).

19. Jarzynski C., Deffner S., Patra A., and Subas¸i Y. Fast forward to the classical adiabatic invariant. Phys. Rev. E, 2017, 95, P. 032122.

20. Dann R., Tobalina A., and Kosloff R. Shortcut to Equilibration of an Open Quantum System. Phys. Rev. Lett., 2019, 122, P. 250402.

21. Setiawan I., Gunara B.E., Masuda S., Nakamura K. Fast forward of entangled spin dynamics. Phys. Rev. A, 2017, 96., P. 052106.

22. Setiawan I., Gunara B.E., Avazbaev S., Nakamura K. Fast forward of adiabatic spin cluster: Geometry dependent of driving interaction. Phys. Rev. A, 2019, 99, P. 062116.

23. Takahashi K. Fast-forward scaling in a finite-dimensional Hilbert space Phys. Rev. A, 2014, 89, P. 042113.

24. Setiawan I., Ekawita R., Sugihakim R., Gunara B.E. Fast-forward adiabatic quantum dynamics of XY spin model on three spin system. Phys. Scr., 2023, 98, P. 025405.

25. Khujakulov A., Nakamura K. Scheme for accelerating quantum tunneling dynamics. Phys. Rev. A, 2016, 93, P. 022101.

26. Nakamura K., Khujakulov A., Masuda S. Fast forward of adiabatic control of tunneling states. Phys. Rev. A, 2017, 95, P. 062108.

27. Nakamura K., Matrasulov J., Izumida Y. Fast-forward approach to stochastic heat engine. Phys. Rev. E, 2020, 102, P. 012129.

28. Setiawan I., Sugihakim R., Gunara B.E., Masuda S., Nakamura K. Fast-forward generation of non-equilibrium steady states of a charged particle under the magnetic field. Progress of Theoretical and Experimental Physics, 2023, P. 063A04.

29. Torrontegui E., Martinez-Garaot M.,Ruschhaupt A., Muga J.G. Shortcut to adiabaticity: fast-forward approach. Phys. Rev. A, 2012, 86, P. 013601.

30. Deffner S. Shortcuts to adiabaticity: suppression of pair production in driven Dirac dynamics. New J. Phys., 2016, 18, P. 012001.

31. Xue-Ke Song, Fu-Guo Deng, Lamata L., and Muga J.G. Robust state preparation in quantum simulations of Dirac dynamics. Phys. Rev. A, 2017, 95, P. 022332.

32. Roychowdhury A., Deffner A. Time-rescaling of Dirac dynamics: Shortcuts to adiabaticity in ion traps andWeyl semimetals. Entropy, 2021, 23(1), P. 81.

33. Bernardo B.d.L. Time-rescaled quantum dynamics as a shortcut to adiabaticity. Phys. Rev. Res., 2020, 2, P. 013133.

34. Thaller B. The Dirac Equation. Springer, Berlin, Germany, 1956.

35. Peskin M.E., Schroeder D.V. An Introduction to Quantum Field Theory (Frontiers in Physics). Westview Press, Boulder, CO, USA, 1995.

36. Wehling T.O., Black-Schaffer A.M., and Balatsky A.V. Dirac materials. Adv. Phys., 2014, 63, P. 1.

37. Zhang X.W., Ren Y., Wang C., Cao T., Xiao D. Gate-Tunable Phonon Magnetic Moment in Bilayer Graphene. Phys. Rev. Lett., 2023, 130, P. 226302.

38. Valderrama J.F.M., Mao D., and Chowdhury D. Low-Energy Optical Sum Rule in Moire Graphene. Phys. Rev. Lett., 2024, 133, P. 196501.

39. Ribetto F.D., Elaskar S.A., Calvo H.L., Bustos-Marun R.A. Fluctuation-induced currents in suspended graphene nanoribbons: Adiabatic quantum pumping approach. Phys. Rev. B., 2023, 108, P. 245408.

40. Setiawan I., Sugihakim R., Gunara B.E. Fast forward Adiabatic Quantum Dynamics On Two Dimensional Dirac Equation. J. Phys.Conf. Ser., 2021, 1842, P. 012057.

41. Kuru S., Negro J. and Nieto L.M. Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields. J. Phys.: Condens. Matter., 2009, 21, P. 455305.


Review

For citations:


Setiawan I., Ekawita R., Sugihakim R., Gunara B.E. Fast forward of adiabatic quantum dynamics: an application to planar Dirac systems. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(3):298-305. https://doi.org/10.17586/2220-8054-2025-16-3-298-305

Views: 80


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)