Оловянно-кремниевые сплавы на основе магния под давлением: результаты эволюционного поиска из первых принципов
https://doi.org/10.17586/2220-8054-2024-15-5-621-631
Аннотация
C помощью пакета программ USPEX, реализующих эволюционные алгоритмы на базе теории функционала плотности (ТФП), был проведен поиск оптимальных структур смешанного станнидосилицида магния разной стехиометрии MgxSiySnz под давлением P ≤ 6 GPa. В результате эволюционного поиска были обнаружены новые структуры составов Mg12Si3Sn, Mg4SiSn and Mg6Si3Sn, которые имеют отрицательную энтальпию образования в диапазоне давлений 0 < P ≤ 10 GPa и не являются твердыми растворами. Эти структуры имеют металлические свойства и характеризуются энергией формирования, сравнимой с энергией формирования бинарных силицидов MgxSiy.
Об авторе
Ю. В. ЛуняковРоссия
Список литературы
1. Nayeb-Hashemi A.A., Clark J.B. The Mg-Sn (Magnesium-Tin) system. Bulletin of Alloy Phase Diagrams, 1984, 5 (5), P. 466–476.
2. Yamashita O., Tomiyoshi S. Effect of annealing on thermoelectric properties of bismuth telluride compounds. Jpn J. Appl. Phys., 2003, 42 (2R), 492.
3. Marfoua B., Lagoun B., Lidjici H., Benghia A., Gueddouh A. Theoretical investigation of structural, electronic and thermoelectric properties of p-n type Mg2Si1−xSnx system. Pramana J. Phys., 2020, 94 (1), 6.
4. Liu W., Tan X., Yin K., Liu H., Tang X., Shi J., Zhang Q. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett., 2012, 108 (16), 166601.
5. Sankhla A., Patil A., Kamila H., Yasseri M., Farahi N., Mueller E. and de Boor J. Mechanical alloying of optimized Mg2(Si,Sn) solid solutions: understanding phase evolution and tuning synthesis parameters for thermoelectric applications. ACS Appl. Energy Mater., 2018, 1 (2), P. 531–542.
6. LeBlanc S., Yee S.K., Scullin M.L., Dames C., Goodson K.E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sustain. Energy Rev., 2014, 32, P. 313–327.
7. Gaultois M.W., Sparks T.D., Borg C.K.H., Seshadri R.K., Bonificio W.D., Clarke D.R. Data-driven review of thermoelectric materials: performance and resource considerations. Chemistry of Materials, 2013, 25 (15), P. 2911–2920.
8. de Boor J., Dasgupta T., Mueller E. Thermoelectric properties of magnesium silicide-based solid solutions and higher manganese silicides. In Materials Aspect of Thermoelectricity, CRC press, Boca Ration, USA, 2016, 160 p.
9. Vantomme A., Mahan J.E., James G.L., Margriet P.B., Bael V., Temst K., Haesendonck C.V. Thin film growth of semiconducting Mg2Si by codeposition. Appl. Phys. Lett., 1997, 70 (9), P. 1086–1088.
10. Zhu Y., Han Zh., Jiang F., Dong E., Zhang B.-P., Zhang W., Liu W. Thermodynamic criterions of the thermoelectric performance enhancement in Mg2Sn through the self-compensation vacancy. Mater. Today Physics, 2021, 16 (1), 100327.
11. Huan T.D. Pressure-stabilized binary compounds of magnesium and silicon. Phys. Rev. Mater., 2018, 2 (2), 023803.
12. Huan T.D., Tuoc V.N., Le N.B., Minh N.V., Woods L.M. High-pressure phases of Mg2Si from first principles. Phys. Rev. B, 2016, 93 (9), 094109.
13. Huan T.D., Tuoc V.N., Le N.B., Minh N.V., Woods L.M. Characterizing magnesium-silicon binaries in Al-Mg-Si supersaturated solid solution by first-principles calculations. J. Sci.-Adv. Mater. Dev., 2016, 1 (4), P. 527–530.
14. Vissers R., Huis M.A., Jansen J., Zandbergen H.W., Marioara C.D., Andersen S.J. The crystal structure of the β ′ phase in Al–Mg–Si alloys. Acta Mater., 2007, 55 (11), P. 3815–3823.
15. Ravi C., Wolverton C. First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta Mater., 2004, 52 (14), P. 4213– 4227.
16. Zandbergen H.W., Andersen S.J., Jansen J. Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies. Science, 1997, 277 (5330), P. 1221–1225.
17. Andersen S.J., Zandbergen H.W., Jansen J., Traeholt C., Tundal U., Reiso O. The crystal structure of the β-phase in Al–Mg–Si alloys. Acta Mater., 1998, 46 (9), P. 3283–3298.
18. Gao H., Zhu T., Liu X., Chen L., Zhao X. Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting. J. Mater. Chem., 2011, 21 (16), P. 5933–5937.
19. Zaitsev V.K., Fedorov M.I., Gurieva E.A., Eremin I.S., Konstantinov P.P., Samunin A.Y., Vedernikov M.V. Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B, 2006, 74 (4), 045207.
20. Liu W., Tan X.J., Yin K., Liu H.J., Tang X.F., Shi J., Zhang Q.J., Uher C. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett., 2012, 108 (16), 166601.
21. Liu W., Kim H.S., Chen S., Jie Q., Lv B., Yao M., Ren Z., Opeil C.P., Wilson S., Chu Ch.-W., Ren Z. N-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation. Proc. Natl. Acad. Sci., 2015, 112 (11), P. 3269–3274.
22. Zaitsev V.K., Fedorov M., Gurieva E.A., Eremin I.S., Konstantinov P.P., Samunin A., Vedernikov M.V. Thermoelectrics of n-type with ZT¿1 based on Mg2Si–Mg2Sn solid solutions. In: ICP, 24th International Conference on Thermoelectrics, Clemson, SC, USA, 2005, P. 204–210.
23. Gao P., Berkun I., Schmidt R.D., Luzenski M.F., Lu X., Bordon Sarac P., Case E.D., Hogan T.P. Transport and mechanical properties of high-ZT Mg2.08Si0.4−xSn0.6Sbx thermoelectric materials. J. Electron. Mater., 2014, 43, P. 1790–1803.
24. Tan J., Liu W., Liu H.J., Shi J., Tang X.F., Yin X.K., Zhang Q.J., Uher C. Multiscale calculations of thermoelectric properties of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. B, 2012, 85 (20), 205212.
25. Dasgupta T., Stiewe C., de Boor J., Muller E. Influence of power factor enhancement on the thermoelectric figure of merit in Mg ¨ 2Si0.4Sn0.6 based materials. Phys. Stat. Sol. A, 2014, 211 (6), P. 1250–1254.
26. Tobola J., Kaprzyk S., Scherrer H. Mg-vacancy-induced semiconducting properties in Mg2Si1−xSbx from Electronic Structure Calculations. J. Electron. Mater., 2010, 39, P. 2064–2069.
27. Kim S., Wiendlocha B., Jin H., Tobola J., Heremans J.P. Kim S., Wiendlocha B., Jin H., Tobola J., Heremans J.P. Electronic structure and thermoelectric properties of p-type Ag-doped Mg2Sn and Mg2Sn1−xSix (x = 0.05, 0.1). J. Appl. Phys., 2014, 116 (15), 153706.
28. Zhang L., Xiao P., Shi L., Henkelman G., Goodenough J.B., Zhou J. Suppressing the bipolar contribution to the thermoelectric properties of Mg2Si0.4Sn0.6 by Ge substitution. J. Appl. Phys., 2015, 117 (15), 155103.
29. Kamila H., Sahu P., Sankhla A., Yasseri M., Pham H.N., Dasgupta T., Mueller E., de Boor J. Analyzing transport properties of p-type Mg2Si– Mg2Sn solid solutions: optimization of thermoelectric performance and insight into the electronic band structure. J. Mater. Chem. A, 2019, 7 (3), P. 1045–1054.
30. Lunyakov Yu.V. Mg2Si silicide under pressure: first-principles evolution search results. Physics of the Solid State, 2020, 62 (5), P. 880–884.
31. Lunyakov Yu.V. Mg2Sn stannide under pressure: first-principles evolutionary search results. Physics of the Solid State, 2021, 63 (4), P. 590–594.
32. Lunyakov Yu.V. Mg2Ge germanide under pressure: first principle evolutionary search results. Physics of the Solid State, 2022, 64 (10), P. 1414– 1419.
33. Oganov A.R., Pickard C.J., Zhu Q., Needs R.J. Structure prediction drives materials discovery. Nat. Rev. Mater., 2019, 4 (5), P. 331–348.
34. Oganov A.R., Lyakhov O.A., Valle M. How evolutionary crystal structure prediction works – and why. Acc. Chem. Res., 2011, 44 (3), P. 227–237.
35. Lyakhov A.O., Oganov A.R., Stokes H.T., Zhu Q. New developments in evolutionary structure prediction algorithm USPEX. Comp. Phys. Comm., 2013, 184 (4), P. 1172–1182.
36. Oganov A.R., Ma Y., Lyakhov A.O., Valle M., Gatti C. Evolutionary crystal structure prediction as a method for the discovery of minerals and materials. Rev. Mineral. Geochem., 2010, 71 (1), P. 271–298.
37. Oganov A.R. Modern methods of crystal structure prediction. John Wiley & Sons, USA, New York, 2011, 274 p.
38. Oganov A.R., Glass C.W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys., 2006, 124 (24), 244704.
39. Kresse G., Furthmuller J.E. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54 (16), P. 11169–11186.
40. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77 (18), P. 3865–3868.
41. Jain A., Ong Sh.P., Hautier G., Wei Ch., Richards W.D., Dacek S., Cholia Sh., Gunter D., Skinner D., Ceder G., Persson K.A. The materials project: a materials genome approach to accelerating materials innovation. APL materials, 2013, 1 (011), 011002.
42. Olijnyk H., Holzapfel W.B. High-pressure structural phase transition in Mg. Phys. Rev. B, 1985, 31 (7), 4682.
43. Errandonea D., Meng Y., Husermann D., Uchida T. Study of the phase transformations and equation of state of magnesium by synchrotron x-ray diffraction. J. Phys.: Condens. Matter, 1989, 15 (8), 1277.
44. Desgreniers S., Vohra Y.K., Ruoff A.L. Tin at high pressure: An energy-dispersive X-ray-diffraction study to 120 GPa. Phys. Rev. B, 2012, 39 (14), P. 10359–10361.
45. Salamat, Ashkan, et al. High-pressure structural transformations of Sn up to 138 GPa: Angle-dispersive synchrotron X-ray diffraction study. Phys. Rev. B, 2013, 88 (10), 104104.
46. Saal J.E., Kirklin S., Aykol M., Meredig B., Wolverton C. Materials design and discovery with high-throughput density functional theory: The Open Quantum Materials Database (OQMD). JOM, 2013, 65, P. 1501–1509.
47. Kirklin S., Saal J.E., Meredig B., Thompson A., Doak J.W., Aykol M., Ruhl S., Wolverton Ch. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput. Mat., 2015, 1, 15010.
48. Togo A., Chaput L., Tadano T., Tanaka I. Implementation strategies in Phonopy and Phono3py. J. Phys. Condens. Matter, 2023, 35, 353001-1-22.
49. Togo A. First-principles phonon calculations with Phonopy and Phono3py. J. Phys. Soc. Jpn., 2023, 92, 012001-1-21.
50. Lloyd-Williams J.H., Monserrat B. Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells. Phys. Rev. B, 2015, 92 (18), 184301.
Рецензия
Для цитирования:
Луняков Ю.В. Оловянно-кремниевые сплавы на основе магния под давлением: результаты эволюционного поиска из первых принципов. Наносистемы: физика, химия, математика. 2024;15(5):621-631. https://doi.org/10.17586/2220-8054-2024-15-5-621-631
For citation:
Luniakov Yu.V. Magnesium based tin-silicon alloys under pressure: first-principles evolution search results. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):621-631. https://doi.org/10.17586/2220-8054-2024-15-5-621-631