Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Boundary composed of small Helmholtz resonators: asymptotic approach

https://doi.org/10.17586/2220-8054-2024-15-6-736-741

Abstract

We consider the solution of the two-dimensional Neumann problem for the Helmholtz equation in a complex region composed of a square resonator with large number of smaller square resonators connected to it through small apertures along one side. The sizes of the apertures and distances between the neighbour apertures tend to zero. We use the method of matching of asymptotic expansions of solutions. By directing the number of attached small resonators to infinity, we obtain a problem for the Laplacian in the main square with energy-dependent boundary condition.

About the Authors

I. Y. Popov
ITMO University
Russian Federation

Igor Y. Popov – Center of Mathematics

Kroverkskiy, 49, St. Petersburg, 197101



E. S. Trifanova
ITMO University
Russian Federation

Ekaterina S. Trifanova – Center of Mathematics

Kroverkskiy, 49, St. Petersburg, 197101



A. S. Bagmutov
ITMO University
Russian Federation

Alexander S. Bagmutov – Center of Mathematics

Kroverkskiy, 49, St. Petersburg, 197101



A. A. Lytaev
ITMO University; Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
Russian Federation

Alexander A. Lytaev – Center of Mathematics

Kroverkskiy, 49, St. Petersburg, 197101

Vasilievskiy island, Bolshoi av., 61, St. Petersburg, 199178



References

1. Courant R., Hilbert D. Methods of Mathematical Physics. Vol. 1, New York: Wiley-Interscience, 1953.

2. Sanchez-Palencia E. Nonhomogeneous Media and Vibration Theory, Berlin - New York: Springer-Verlag, 1980.

3. Chechkin G.A., Friedman A., Piatnitski A.L. The boundary-value problem in domains with very rapidly oscillating boundary. J. Math. Anal. Appl., 1999, 231, P. 213–234.

4. Jimbo S. The singularity perturbed domain and the characterization for the eigenfunctions with Neumann boundary condition. J. Differential Equations, 1989, 77, P. 322–350.

5. Arrieta J.M., Hale J.K., Han Q. Eigenvalue problems for non-smoothly perturbed domains, J. Differential Equations, 1991, 91, P. 24–52.

6. Birman M.Sh., Suslina T.A. Homogenization with corrector term for periodic elliptic differential operators. St. Petersburg Math. J., 2006, 17, P. 897–973.

7. Borisov D., Bunoiu R., Cardone G. Homogenization and asymptotics for a waveguide with an in nite number of closely located small windows. J. Math. Sci., 2011, 176, P. 774–785.

8. Briet Ph. A model of sheared nanoribbons. Nanosystems: Phys. Chem. Math., 2022, 13(1), P. 12–16.

9. Brizzi R., Chalot J.-P. Boundary homogenization and Neumann boundary value problem, Ricerche Mat, 1997, 46, P. 341–387.

10. Cardone G., Durante T. Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation. Nanosystems: Phys. Chem. Math., 2022, 13, P. 5–11.

11. Griso G. Error estimate and unfolding for periodic homogenization. Asymptot. Anal., 2004, 40, P. 269–286.

12. Kenig C.E., Lin F., Shen Z. Periodic homogenization of Green and Neumann functions. Comm. Pure Appl. Math., 2014, 67, P. 1219–1262.

13. Khrabustovskyi A. Homogenization of eigenvalue problem for Laplace-Beltrami operator on Riemannian manifold with complicated ”bubble-like” microstructure, Math. Methods Appl. Sci., 2009, 32, P. 2123–2137.

14. Suslina T.A. Homogenization of elliptic operators with periodic coefficients depending on the spectral parameter. St. Petersburg Math. J., 2016, 27(4), P. 651–708.

15. Zhikov V.V. Spectral method in homogenization theory. Proc. Steklov Inst. Math., 2005, 250, P. 85-94.

16. Cardone G. and Khrabustovskyi A. Neumann spectral problem in a domain with very corrugated boundary. Journal of Differential Equations, 2015, 259(6), P. 2333–2367.

17. Behrndt J. Elliptic boundary value problems with k-dependent boundary conditions. J Differential Equations, 2010, 249, P. 2663–2687.

18. Popov I.Y., Blinova I.V., Popov A.I. A model of a boundary composed of the Helmholtz resonators. Complex Variables and Elliptic Equations, 2021, 66(8), P. 1256–1263.

19. Bagmutov A.S., Najar H., Melikhov I.F., Popov I.Y. On the discrete spectrum of a quantum waveguide with Neumann windows in presence of exterior field. Nanosystems: Phys. Chem. Math., 2022, 13(2), P. 156–164.

20. Bagmutov A.S., Trifanova E.S., Popov I.Y. Resonator with a corrugated boundary: Numerical results. Physics of Particles and Nuclei Letters, 2023, 20(2), P. 96–99.

21. Belolipetskaia A.G., Boitsev A.A., Fassari S., Popov I.Y., Rinaldi F. Two-dimensional Helmholtz resonator with two close point-like windows: regularization for the Neumann case. Methods of Functional Analysis and Topology, 2022, 28(2), P. 95–104.

22. Belolipetskaya A.G., Boitsev A.A., Fassari S. and Popov I.Y. 3D Helmholtz resonator with two close point-like windows: Regularisation for Dirichlet case. International Journal of Geometric Methods in Modern Physics, 2021, 18(10), P. 2150153.

23. Gadyl’shin R.R. Existence and asymptotics of poles with small imaginary part for the Helmholtz resonator. Russian Mathematical Surveys, 1997, 52(1), P. 1–72.

24. Il’in A.M. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Moscow: Nauka, 1989 in Russian; English transl. (Transl. Math. Monographs, 102), Providence: Amer. Math. Soc., 1992.

25. Gulcan Aydin, Sait Eren San, Breaking the limits of acoustic science: A review of acoustic metamaterials,Materials Science and Engineering: B, 2024, 305, P. 117384.

26. Ni X., Chen K., Weiner M., Apigo D.J., Prodan C., Alu A., Prodan E., Khanikaev A.B. Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals. Commun. Phys., 2019, 2, P. 55.

27. Proskuryakov I.V. Problems In Linear Algebra. English translation, Moscow: Mir Publishers, 1978.

28. Vorobiev A.M., Bagmutov A.S., Popov A.I. On formal asymptotic expansion of resonance for quantum waveguide with perforated semitransparent barrier. Nanosystems: Phys. Chem. Math., 2019, 10(4), P. 415–419.


Review

For citations:


Popov I.Y., Trifanova E.S., Bagmutov A.S., Lytaev A.A. Boundary composed of small Helmholtz resonators: asymptotic approach. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):736-741. https://doi.org/10.17586/2220-8054-2024-15-6-736-741

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)