Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Настройка нелинейных оптических свойств 1-мерной экситонной системы квантовых точек GaAs c полупараболическим потенциалом с подробным сравнением с экспериментальными результатами: влияние гидростатического давления и температуры

https://doi.org/10.17586/2220-8054-2024-15-5-632-642

Аннотация

Настоящее исследование посвящено изучению влияния температуры и гидростатического давления на коэффициент поглощения и показатель преломления одномерных полупараболических экситонных квантовых точек GaAs с применением формализма компактной матрицы плотности. Расчеты проводятся для получения волновых функций и энергий экситонных состояний в режиме сильного ограничения с использованием приближения эффективной массы. Значительная зависимость нелинейного оптического показателя преломления и коэффициента поглощения от гидростатического давления и температуры может наблюдаться для экситонного и безэкситонного случая. Наши исследования показывают, что синие/красные сдвиги пиков существенны, когда учитываются экситонные взаимодействия. Противоположные эффекты, вызванные температурой и давлением, имеют существенное практическое значение, поскольку они расширяют альтернативный подход к настройке и управлению оптическими частотами, возникающими в результате переходов. Сравнительный анализ аналитических оптических свойств экситонной системы облегчает экспериментальную идентификацию этих переходов, которые часто близки. Мы попытались сравнить коэффициент поглощения, полученный в настоящей работе, с экспериментальными данными при T ≅ 10 К и 100 К и обнаружили, что теоретическое предсказание согласуется для T ≅ 10 К и немного отклоняется от экспериментальных данных для более высоких температур. Все эти выводы могут иметь широкие последствия для будущего проектирования оптоэлектронных устройств.

Об авторах

Суман Дахия
Department of Applied Physics, Delhi Technological University
Индия


Лахон Сиддхартха
Physics Department, KMC, University of Delhi
Индия


Ринку Шарма
Department of Applied Physics, Delhi Technological University
Индия


Список литературы

1. Jamieson T., Bakhshi R., Petrova D., Pocock R., Imani M., Seifalian A.M. Biological applications of quantum dots. Biomaterials, 2007, 28 (31), P. 4717–4732.

2. Salata O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol., 2004 2 (1), 3.

3. Mocatta D., Cohen G., Schattner J., Millo O., Rabani E., Banin U. Heavily doped semiconductor nanocrystal quantum dots. Science, 2011, 332 (6025), P. 77–81.

4. Koenraad P.M, Flatte M.E. Single dopants in semiconductors. ´ Nat. Mater., 2011, 10, P. 91–100.

5. Aghoutane N., Perez L.M., Tiutiunnyk A., Laroze D., Baskoutas S., Dujardin F., Fatimy A.E., El-Yadri M., Feddi E.M. Adjustment of Terahertz ´ Properties Assigned to the First Lowest Transition of (D+, X) Excitonic Complex in a Single Spherical Quantum Dot Using Temperature and Pressure. Applied Sciences, 2021, 11 (13), 5969.

6. Schneider H., Fuchs F., Dischler B., Ralston J.D., Koidl P. Intersubband absorption and infrared photodetection at 3.5 and 4.2 µm in GaAs quantum wells. Appl. Phys. Lett., 1991, 58, P. 2234–2236.

7. Ferry D.K., Goodnick S.M. Transport in Nanostructures. Cambridge University Press, Cambridge, 1997.

8. Sarkisyan H.A. Direct optical absorption in cylindrical quantum dot. Mod. Phys. Lett. B, 2004, 18 (10), P. 443–452.

9. Saravanamoorthy S.N., John Peter A., Lee C.W. Optical peak gain in a PbSe/CdSe core-shell quantum dot in the presence of magnetic field for mid-infrared laser applications. Chem. Phys., 2017, 483–484, P. 1–6.

10. Bera A., Ghosh M. Dipole moment and polarizability of impurity doped quantum dots driven by noise: Influence of hydrostatic pressure and temperature. Physica B, 2017, 515, P. 18–22.

11. Schaller R.D., Klimov V.I. High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett., 2004, 92 (18), 186601.

12. Huynh W.U., Dittmer J.J., Alivisatos A.P. Hybrid nanorod-polymer solar cells. Science, 2002, 295 (5564), P. 2425–2427.

13. Zhong X., Xie R., Basche Y., Zhang T., Knoll W. High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals. Chem. Mater., Chem. Mater., 2005, 17 (16), P. 4038–4042.

14. Ungan F., Martınez-Orozco J.C., Restrepo R.L., Mora-Ramos M.E., Kasapoglu E., Duque C.A. Nonlinear optical rectification and secondharmonic generation in a semi-parabolic quantum well under intense laser field: Effects of electric and magnetic fields. Superlattice Microstruct., 2015, 81, 26.

15. Karimi M.J., Rezaei G. Effects of external electric and magnetic fields on the linear and nonlinear intersubband optical properties of finite semiparabolic quantum dots. Physica B, 2011, 406, 4423.

16. Florez J., Camacho A. Excitonic effects on the second-order nonlinear optical properties of semi-spherical quantum dots. Nanoscale Res. Lett., 2011, 6, 268.

17. Cristea M. Comparative study of the exciton states in CdSe/ZnS core-shell quantum dots under applied electric fields with and without permanent electric dipole moment. Eur. Phys. J. Plus, 2016, 131, 86.

18. Chaurasiya R., Dahiya S., Sharma R. A study of confined Stark effect, hydrostatic pressure and temperature on nonlinear optical properties in 1D GaxAl1-xAs/GaAs/GaxAl1-xAs quantum dots under a finite square well potential. Nanosystems: Phys. Chem. Math., 2023, 14 (1), P. 44–53.

19. Eseanu N. Simultaneous effects of laser field and hydrostatic pressure on the intersubband transitions in square and parabolic quantum wells. Phys. Lett. A, 2010, 374, 1278.

20. Rezaei G., Karimi M.J., Keshavarz A. Excitonic effects on the nonlinear intersubband optical properties of a semi-parabolic one-dimensional quantum dot. Physica E, 2010, 43, 475.

21. Yuan H.J., Zhang Y., Mo H., Chen N., Zhang Z.-H. Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells. Physica E, 2016, 77, 102.

22. Karabulut I., Safak H., Tomak M. Nonlinear optical rectification in asymmetrical semiparabolic quantum wells. Solid State Commun., 2005, 135, 735.

23. Bautista J.E., Lyra M.L., Lima R.P.A. Screening effect on the exciton mediated nonlinear optical susceptibility of semiconductor quantum dots. Photon. Nanostruct., 2013, 11, 8.

24. Paspalakis E., Boviatsis J., Baskoutas S. Effects of probe field intensity in nonlinear optical processes in asymmetric semiconductor quantum dots. J. Appl. Phys., 2013, 114, 153107.

25. Karabulut I., Safak H., Tomak M. Excitonic effects on the nonlinear optical properties of small quantum dots. J. Phys. D: Appl. Phys., 2008, 41, 155104.

26. Baghramyan H.M., Barseghyan M.G., Kirakosyan A.A., Restrepo R.L., Duque C.A. Linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of hydrostatic pressure and aluminum concentration. J. Lumin., 2013, 134, P. 594– 599.

27. Gambhir M., Varsha, Prasad V. Pressure- and temperature-dependent EIT studies in a parabolic quantum dot coupled with excitonic effects in a static magnetic field. Pramana – J. Phys., 2022, 96, 81.

28. Gambhir M., Kumar P., Kumar T. Investigation of linear and third-order nonlinear optical properties in a laser-dressed parabolic quantum dot with a hydrogenic donor impurity in the presence of a static electric field. Indian J. Phys., 2023, 97, P. 2169–2178.

29. Zhang L., Li X., Zhao Z. The influence of optical absorption under the external electric field and magnetic field of parabolic quantum dots. Indian J. Phys., 2022, 96, P. 3645–3650.

30. Duan Y., Li X., Chang C. Effects of Magnetic Field on Nonlinear Optical Absorption in Quantum Dots Under Parabolic-Inverse Squared Plus Modified Gaussian Potential. Braz. J. Phys., 2022, 52, 123.

31. Yu Y.-B., Zhu S.-N., Guo K.-X. Exciton effects on the nonlinear optical rectification in one-dimensional quantum dots. Phys. Lett. A, 2005, 175, 335.

32. Karabulut ˙I., S¸ afak H. Nonlinear optical rectification in semiparabolic quantum wells with an applied electric field. Physica B, 2005, 82, 368.

33. Duque C.M., Mora-Ramos M.E., Duque C.A. Simultaneous effects of electron-hole correlation, hydrostatic pressure, and temperature on the third harmonic generation in parabolic GaAs quantum dots. J. Nanopart. Res., 2013, 13, P. 6103–6112.

34. Baskoutas S., Paspalakis E., Terzis A.F. Effects of excitons in nonlinear optical rectification in semiparabolic quantum dots. Phys. Rev. B, 2006, 74, 153306.

35. Duque C.A., Porras-Montenegro N., Barticevic Z., Pacheco M., Oliveira L.E. Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots. J. Phys.: Condens. Matter, 2006, 18, P. 1877–1884.

36. Duque C.M., Morales A.L., Mora-Ramos M.E., Duque C.A. Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings. J. of Luminescence, 2013, 143, P. 81–88.

37. Mughnetsyan V.N., Manaselyan Kh.A., Barseghyan M.G., Kirakosyan A.A. Simultaneous effects of hydrostatic pressure and spin-orbit coupling on linear and nonlinear intraband optical absorption coefficients in a GaAs quantum ring. J. Lumin., 2013, 134, P. 24–27.

38. Duque C.M., Mora-Ramos M.E., Duque C.A. Hydrostatic pressure and electric field effects and nonlinear optical rectification of confined excitons in spherical quantum dots. Superlattices and Microstructures, 2011, 49, P. 264–268.

39. Bejan D. Exciton effects on the nonlinear optical properties of semiparabolic quantum dot under electric field. Eur. Phys. J. Plus, 2017, 132, 102.

40. Antil S., Kumar M., Lahon S., Dahiya S., Ohlan A., Punia R., Maan A.S. Influence of hydrostatic pressure and spin orbit interaction on optical properties in quantum wire. Physica B: Condensed Matter, 2019, 552, P. 202–208.

41. Antil S., Kumar M., Lahon S., Maan A.S. Pressure dependent optical properties of quantum dot with spin orbit interaction and magnetic field. Optik – Int. J. for Light and Electron Optics, 2019, 176, P. 278–286.

42. Dahiya S., Lahon S., Sharma R. Effects of temperature and hydrostatic pressure on the optical rectification associated with the excitonic system in a semi-parabolic quantum dot. Physica E, 2020, 118, 113918.

43. Braggio A., Grifoni M., Sassetti M., Napoli F. Plasmon and charge quantization effects in a double-barrier quantum wire. Europhys. Lett., 2000, 50, 236.

44. Unlu S., Karabulut I., Safak H. Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Physica E, 2006, 33, 319.

45. Fickenscher M., Shi T., Jackson Howard E., Smith Leigh M., Yarrison-Rice Jan M., Zheng C., Miller P., Etheridge J., Wong Bryan M., Gao Q., Deshpande S., Hoe Tan H., Jagadish C. Optical, Structural, and Numerical Investigations of GaAs/AlGaAs Core-Multishell Nanowire Quantum Well Tubes. Nano Letters, 2013, 13 (3), P. 1016–1022.

46. Raigoza N., Morales A., Montes A., Porras-Montenegro N., C.A. Duque, Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings. Phys. Rev. B, 2004, 69, 045323.

47. Oyoko H., Parras-Montenegro N., Lopez S., Duque C.A. Comparative study of the hydrostatic pressure and temperature effects on the impurityrelated optical properties in single and double GaAs–Ga1−xAlxAs quantum wells. Phys. Status Solidi C, 2007, 4, 298.

48. Herbert Li E. Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures. Physica E, 2000, 5, 215.

49. Haldane F.D.M. ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C, 1981, 14, 2585.

50. Boyd R.W. Nonlinear Optics, Elsevier Science, 2020.

51. Naghmaish Aishah AL., Dakhlaoui H., Ghrib T. Effects of magnetic, electric, and intense laser fields on the optical properties of AlGaAs/GaAs quantum wells for terahertz photodetectors. Physica B: Condensed Matter, 2022, 635, 413838.

52. Dahiya S., Lahon S., Sharma R. Study of third harmonic generation in InxGa1−xAs semi-parabolic 2-D quantum dot under the influence of Rashba spin-orbit interactions (SOI): Role of magnetic field, confining potential, temperature & hydrostatic pressure. Physica E: Low-dimensional Systems and Nanostructures, 2023, 147, 115620.

53. Kuhn K.J., Lyengar G.U., Yee S. Free carrier induced changes in the absorption and refractive index for interurban optical transitions in AlxGa1−xAs/GaAs/AlxGa1−xAs quantum wells. J. Appl. Phys., 1991, 70, 5010.

54. Kopf R.F., Herman M.H., Lamont Schnoes M., Perley A.P., Livescu G., Ohring M. Band offset determination in analog graded parabolic and triangular quantum wells of GaAs/AlGaAs and GaInAs/AlInAs. J. Appl. Phys., 1992, 71 (10), P. 5004–5011.

55. Gurmessa A., Melese G., Choudary V.L., Shewamare S. Photoluminescence from GaAs nanostructures. Int. J. of Physical Sciences, 2015, 10 (3), P. 106–111.

56. Lourenc S.A., Dias I.F.L., Duart J.L., Laureto E., Aquino V.M., Harmand J.C. Temperature-Dependent Photoluminescence Spectra of GaAsSb/AlGaAs and GaAsSbN/GaAs Single Quantum Wells under Different Excitation Intensities. Brazilian J. of Physics, 2007, 37 (4), P. 1212– 1217.


Рецензия

Для цитирования:


Дахия С., Сиддхартха Л., Шарма Р. Настройка нелинейных оптических свойств 1-мерной экситонной системы квантовых точек GaAs c полупараболическим потенциалом с подробным сравнением с экспериментальными результатами: влияние гидростатического давления и температуры. Наносистемы: физика, химия, математика. 2024;15(5):632-642. https://doi.org/10.17586/2220-8054-2024-15-5-632-642

For citation:


Dahiya S., Lahon S., Sharma R. Tuning the nonlinear optical properties of a 1D excitonic GaAs quantum dot system under a semi-parabolic potential with a detailed comparison with the experimental results: interplay of hydrostatic pressure and temperature. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):632-642. https://doi.org/10.17586/2220-8054-2024-15-5-632-642

Просмотров: 8


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)