Некоторые условия существования 4-периодических решений в неоднородных дифференциальных уравнениях с кусочно-попеременно опережающими и запаздывающими аргументами
https://doi.org/10.17586/2220-8054-2024-15-6-749-754
Аннотация
В рукописи представлен метод характеризации 4-периодических решений в неоднородных дифференциальных уравнениях первого порядка, включающих кусочно-попеременно опережающий и запаздывающий аргумент. Он систематически описывает предпосылки для существования этих решений и предоставляет точные методологии для их определения. Кроме того, в статью включен иллюстративный пример, включая сценарии с бесконечным количеством решений, для демонстрации эффективности предлагаемого подхода.
Об авторах
Куо-Шоу ЧиуЧили
Ф. Кордова-Лепе
Чили
Список литературы
1. Busenberg S., Cooke K.L. Models of vertically transmitted diseases with sequential-continuous dynamics. Nonlinear Phenomena in Mathematical Sciences, Academic Press, New York, 1982, P. 179–187.
2. Dai L. Nonlinear dynamics of piecewise constant systems and implementation of piecewise constant arguments, World Scientific, Singapore, 2008.
3. Chiu K.-S. Global exponential stability of bidirectional associative memory neural networks model with piecewise alternately advanced and retarded argument. Comp. Appl. Math., 2021, 40, P. 263.
4. Chiu K.-S., Li T. New stability results for bidirectional associative memory neural networks model involving generalized piecewise constant delay. Math. Comput. Simul., 2022, 194, P. 719–743.
5. Chiu K.-S. Existence and global exponential stability of periodic solution for Cohen-Grossberg neural networks model with piecewise constant argument. Hacettepe J. Math. Stat., 2022, 51(5), P. 1219–1236.
6. Karakoc F. Asymptotic behaviour of a population model with piecewise constant argument. Appl. Math. Lett., 2017, 70, P. 7–13.
7. Lafci M. Behavior of the solutions of a single-species population model with piecewise constant argument. Iran. J. Math. Sci. Inform., 2024, 19(2), P. 111–117.
8. Aftabizadeh A.R., Wiener J. Oscillatory and periodic solutions of an equation alternately of retarded and advanced type. Appl. Anal., 1986, 23, P. 219–231.
9. Chiu K.-S., Pinto M. Oscillatory and periodic solutions in alternately advanced and delayed differential equations. Carpathian J. Math., 2013, 29(2), P. 149–158.
10. Chiu K.-S. Green’s function for periodic solutions in alternately advanced and delayed differential systems. Acta Math. Appl. Sin. Engl. Ser., 2020, 36, P. 936–951.
11. Chiu K.-S. Green’s function for impulsive periodic solutions in alternately advanced and delayed differential systems and applications. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 2021, 70(1), P. 15–37.
12. Chiu K.-S. Periodic solutions of impulsive differential equations with piecewise alternately advanced and retarded argument of generalized type. Rocky Mountain J. Math., 2022, 52, P. 87–103.
13. Chiu K.-S. Numerical-analytic successive approximation method for the investigation of periodic solutions of nonlinear integro-differential systems with piecewise constant argument of generalized type. Hacettepe J. Math. Stat., 2024, 53(5), P. 1272–1290.
14. Karakoc F., H. Bereketoglu H., Seyhan G. Oscillatory and periodic solutions of impulsive differential equations with piecewise constant argument. Acta Appl. Math., 2010, 110, P. 499–510.
15. Karakoc F., Unal A., Bereketoglu H. Oscillation of a nonlinear impulsive differential equation system with piecewise constant argument. Adv. Differ. Equ., 2018, 99.
16. Oztepe G.S., Karakoc F., Bereketoglu H. Oscillation and periodicity of a second order impulsive delay differential equation with a piecewise constant argument. Communications in Mathematics, 2017, 25, P. 89–98.
17. Wang G.-Q. Periodic solutions of a neutral differential equation with piecewise constant arguments. J. Math. Anal. Appl., 2007, 326, P. 736–747.
18. Muminov M.I. On the method of finding periodic solutions of second-order neutral differential equations with piecewise constant arguments. Adv. Differ. Equ., 2017, 336.
19. Muminov M.I., Ali H.M. Existence conditions for periodic solutions of second-order neutral delay differential equations with piecewise constant arguments. Open Math., 2020, 18(1), P. 93–105.
20. Muminov M.I., Jumaev Z.Z. Exact periodic solutions of second-order differential equations with piecewise constant arguments. Advances in Mathematics: Scientific Journal, 2021, 10(9), P. 3113–3128.
21. Muminov M.I., Radjabov T.A. On existence conditions for periodic solutions to a differential equation with constant argument. Nanosystems: Phys. Chem. Math., 2022, 13(5), P. 491–497.
22. Muminov M.I., Radjabov T.A. Existence conditions for 2-periodic solutions to a non-homogeneous differential equations with piecewise constant argument. Examples and Counterexamples, 2024, 5, P. 100145.
23. Chiu K.-S., Pinto M. Variation of parameters formula and Gronwall inequality for differential equations with a general piecewise constant argument. Acta Math. Appl. Sin. Engl. Ser., 2011, 27(4), P. 561–568.
24. Chiu K.-S., Berna I. Nonautonomous impulsive differential equations of alternately advanced and retarded type. Filomat, 2023, 37(23), P. 7813–7829.
25. Jayasree K.N., Deo S.G. Variation of parameters formula for the equation of Cooke and Wiener. Proc. Am. Math. Soc., 1991, 112(1), P. 75–80.
Рецензия
Для цитирования:
Чиу К., Кордова-Лепе Ф. Некоторые условия существования 4-периодических решений в неоднородных дифференциальных уравнениях с кусочно-попеременно опережающими и запаздывающими аргументами. Наносистемы: физика, химия, математика. 2024;15(6):749-754. https://doi.org/10.17586/2220-8054-2024-15-6-749-754
For citation:
Chiu K., Cordova-Lepe F. Some conditions for the existence of 4-periodic solutions in non-homogeneous differential equations involving piecewise alternately advanced and retarded arguments. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):749-754. https://doi.org/10.17586/2220-8054-2024-15-6-749-754