Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Inertial nanostep piezoelectric drive: modeling and experiment

https://doi.org/10.17586/2220-8054-2024-15-5-643-653

Abstract

A vertical inertial nanostep piezoelectric drive is considered. A virtual model was created, and the operating modes of a real drive were studied by numerical experiment. Piezo electromechanical resonance was discovered and a method to eliminate resonant vibrations by increasing electrical losses in the discharge circuit of the piezo actuator capacitance was proposed. A satisfactory agreement between the calculated and experimental data for the drive steps in the nanometer displacement range was obtained.

About the Authors

Olga M. Gorbenko
Institute for Analytical Instrumentation of RAS
Russian Federation

Olga M. Gorbenko

St. Petersburg



Stanislav Y. Lukashenko
Institute for Analytical Instrumentation of RAS
Russian Federation

Stanislav Y. Lukashenko

St. Petersburg



Stepan V. Pichakhchi
Institute for Analytical Instrumentation of RAS; St. Petersburg Academic University
Russian Federation

Stepan V. Pichakhchi

St. Petersburg



Ivan D. Sapozhnikov
Institute for Analytical Instrumentation of RAS
Russian Federation

Ivan D. Sapozhnikov

St. Petersburg



Mikhail L. Felshtyn
Institute for Analytical Instrumentation of RAS
Russian Federation

Mikhail L. Felshtyn

St. Petersburg



Alexander O. Golubok
Institute for Analytical Instrumentation of RAS; St. Petersburg Academic University
Russian Federation

Alexander O. Golubok

St. Petersburg



References

1. Spanner K., Koc B. Piezoelectric Motors, an Overview. Actuators, 2016, 5, 6.

2. Bobtsov A.A., Boykov V.I., Bystrov S.V., Grigoriev V.V., Karev P.V. Actuators and systems for micromovements: textbook. ITMO University, SPb, 2017, 134 p.

3. Mohith S., Upadhya A.R., Navin K.P., Kulkarni S.M., Rao M. Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Materials and Structures, 2021, 30 (1), 3002.

4. Wang L., Chen W., Liu J., Deng J., Liu Y. A review of recent studies on non-resonant piezoelectric actuators. Mechanical Systems and Signal Processing, 2019, 133 (1), 106254.

5. Bansevicius R., Ragulskis K. Vibromotors. MOKSLAS Publishing House, Vilnius, Lithuania, 1981, 170 p. (In Russian)

6. Ragulskis K., Bansevicius R., Barauskas R., Kulvietis G. Vibromotors for Precision Microrobots (Application of Vibration Series), Hemisphere Publishing Co., Detroit, 1988, 310 p.

7. Ueha U., Tomikawa Y. Ultrasonic Motors: Theory and Applications. Clarendon: Oxford, UK, 1993, 297 p.

8. Sashida T., Kenjo T. An Introduction to Ultrasonic Motors. Clarendon: Oxford, UK, 1993, 254 p.

9. Uchino K. Piezoelectric Actuators and Ultrasonic Motors. Boston, MA: Kluwer Academic Publisher, USA, 1997, 347 p.

10. Zhao C. Ultrasonic Motors: Technologies and Applications. Science Press: Beijing, China; Springer Verlag: Berlin, Germany, 2011, 494 p.

11. Muller K.D., Marth H., Pertsch P., Gloess R., Zhao X. Piezo-Based, Long-Travel Actuators for Special Environmental Conditions. ¨ Proceedings of the 10th Int. Conference on New Actuators, Bremen, Germany, 14 – 16 June 2006, P. 149 – 153.

12. Golubok A.O., Timofeev V.A. STM Combined with SEM without SEM Capability Limitations. Ultramicroscopy, 1992, 42–44 (2), P. 1558–1563.

13. Koc B., Delibas B. Impact Force Analysis in Inertia-Type Piezoelectric Motors. Actuators, 2023, 12, 52.

14. Gorbenko O.M., Zhukov M.V., Pichakhchi S,V., Sapozhnikov I.D., Felshtyn M.L., Golubok A.O. Compact Scanning Probe Microscope Head Based on Inertial Trusters Using Piezopakets. Nauchnoe Priborostroenie, 2021, 31 (2), P. 3–22.

15. Hunstig M. Piezoelectric Inertia Motors – A Critical Review of History, Concepts, Design, Applications, and Perspectives. Actuators, 2017, 6, 7.

16. Liu P.,Wen Z., Sun L. An In-Pipe Micro Robot Actuated by Piezoelectric Bimorphs. Chin. Sci. Bull., 2009, 54, P. 2134–2142.

17. Okamoto Y., Yoshida Y. Development of linear actuators using piezoelectric elements. Electron. Comm. Jpn., 1998, 81, P. 11–17.

18. Drevniok B., Paul W.M., Hairsine K.R., McLean A.B. Methods and instrumentation for piezoelectric motors. Rev. Sci. Instrum., 2012, 83, 033706.

19. Wang J., Lu Q. How are the behaviors of piezoelectric inertial sliders interpreted? Rev. Sci. Instrum., 2012, 83, 093701.

20. Gao Q., He M., Lu X., Zhang C., Cheng T. Simple and high-performance stick-slip piezoelectric actuator based on an a symmetrical flexure hinge driving mechanism. J. of Intelligent Material Systems and Structures, 2019, 30 (14), P. 2125–2134.

21. Sun P., Xu Z., Jin L., Zhu X. A Novel Piezo Inertia Actuator Utilizing the Transverse Motion of Two Parallel Leaf-Springs. Micromachines (Basel), 2023, 14 (5), 954.

22. Renner C., Niedermann P. A vertical piezoelectric inertial slider. The Review of scientific instruments, 1990, 61 (3), P. 965–967.

23. Pohl D.W. Dynamic Piezoelectric Translation Devices. Rev. Sci. Instrum., 1987, 58, P. 54–57.

24. Dubois F., Belly C., Saulot A., Berthier Y. Stick-slip in stepping piezoelectric Inertia Drive Motors – Mechanism impact on a rubbing contact. Tribology International, 2016, 100, P. 371–379.

25. Zhang H., Zeng P., Hua S., Cheng G., Yang Z. Impact Drive Rotary Precision Actuator with Piezoelectric Bimorphs. Front. Mech. Eng. China, 2008, 3, P. 71–75.

26. Ceponis A., Jurenas V., Mazeika D., Bakanauskas V., Deltuviene D. Rod-Shaped Linear Inertial Type Piezoelectric Actuator. ˇ Actuators, 2023, 12, 379.


Review

For citations:


Gorbenko O.M., Lukashenko S.Y., Pichakhchi S.V., Sapozhnikov I.D., Felshtyn M.L., Golubok A.O. Inertial nanostep piezoelectric drive: modeling and experiment. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):643-653. https://doi.org/10.17586/2220-8054-2024-15-5-643-653

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)