Существование собственных значений тензорной суммы моделей Фридрихса с двумерными возмущениями
https://doi.org/10.17586/2220-8054-2023-14-2-151-157
Аннотация
В статье рассматривается тензорная сумма двух моделей Фридрихса с возмущением второго ранга. Гамильтониану соответствует система трех квантовых частиц на одномерной решетке. Исследуется количество и расположение собственных значений. Существование собственных значений, расположенных, соответственно, внутри, в зазоре и ниже дна существенного спектра доказано.
Об авторах
Т. Х. ПасуловРоссия
Б. И. Бахронов
Россия
Список литературы
1. Popov I.Y., Melikhov I.F. Multi-particle bound states in window-coupled 2D quantum waveguides. Chinese J. of Physics- Taipei, 2015, 53(3), P. 0802/1–12.
2. Bagmutov A.S., Popov I.Y. Window-coupled nanolayers: window shape influence on one-particle and two-particle eigenstates. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11(6), P. 636–641.
3. Linde Y. Geometrically induced two-particle binding in a waveguide. J. Phys. A: Math. Gen., 2006, 39(18), P. 5105–5114.
4. Friedrichs K.O. Uber die Spectralzerlegung einee Integral operators. Math. Ann., 1938, 115, P. 249–272.
5. Friedrichs K.O. On the perturbation of continuous spectra. Comm. Pure Appl. Math., 1948, 1, P. 361–406.
6. Faddeev L.D. The construction of the resolvent of the Schr¨ odinger operator for a three-particle system, and the scattering problem. Sov. Phys. Dokl., 1963, 7, P. 600–602.
7. Faddeev L.D. On a model of Friedrichs in the theory of perturbations of the continuous spectrum. Am. Math. Soc., Transl., II. Ser., 1967, 6(2), P. 177–203.
8. Yafaev D.R. Mathematical Scattering Theory [in Russian], St. Petersburg State Univ., St. Petersburg, 1994; English transl. (Transl. Math. Monogr., Vol. 105), Amer. Math. Soc., Providence, R. I., 1992.
9. Faddeev L.D., Merkuriev S.P. Quantum Scattering Theory for Several Particle Systems. Math. Phys. Appl. Math., Vol. 11, Kluwer, Dordrecht, 1993.
10. Reed M., Simon B. Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York, 1979.
11. Rasulov T.Kh. Asymptotics of the discrete spectrum of a model operator associated with the system of three particles on a lattice. Theoret. and Math. Phys., 2010, 163(1), P. 429–437.
12. Albeverio S., Lakaev S.N., Muminov Z.I. The threshold effects for a family of Friedrichs models under rank one perturbations. J. Math. Anal. Appl., 2007, 330, P. 1152–1168.
13. Mogilner A.I. Hamiltonians in solid state physics as multiparticle discrete Schr¨odinger operators: problems and results. Advances in Sov. Math., 1991, 5, P. 139–194.
14. Zhukov Yu.V. The Iorio-O’Caroll theorem for an N-particle lattice Hamiltonian. Theor. Math. Phys., 1996, 107(1), P. 478–486.
15. Budylin A.M., Koptelov Ya.Yu., Levin S.B. On asymptotic structure of three-body scattering states for the scattering problem of charged quantum particles. Advances in Quantum Chemistry, 2021, 84, P. 347–424.
16. Albeverio S., Lakae S.N.v, Djumanova R.Kh. The essential and discrete spectrum of a model operator associated to a system of three identical quantum particles. Rep. Math. Phys., 2009, 63(3), P. 359–380.
17. Albeverio S., Lakaev S.N., Muminov Z.I. On the number of eigenvalues of a model operator associated to a system of three-particles on lattices. Russ. J. Math. Phys., 2007, 14(4), P. 377–387.
18. Eshkabilov Yu.Kh., Kuchkarov R.R. Essential and discrete spectra of the three-particle Schr¨odinger operator on a lattice. Theor. Math. Phys., 2012, 170(3), P. 341–353.
19. Rasulov T.H., Dilmurodov E.B. Eigenvalues and virtual levels of a family of 2 2 operator matrices. Methods of Functional Analysis and Topology, 2019, 25(1), P. 273–281.
20. Rasulov T.H., Dilmurodov E.B. Analysis of the spectrum of a 2 2 operator matrices. Discrete spectrum asymptotics. Nanosystems: Physics, chemistry, mathematics, 2020, 11(2), P. 138–144.
21. Rasulov T.H., Dilmurodov E.B. Infinite number of eigenvalues of 2 2 operator matrices: Asymptotic discrete spectrum. Theoret. and Math. Phys., 2020, 205(3), P. 1564–1584.
22. Boitsev A.A., Brasche J.F., Malamud M.M., Neidhardt H., Popov I.Yu. Boundary Triplets, Tensor Products and Point Contacts to Reservoirs. Ann. Henri Poincare, 2018, 19, P. 2783–2837.
Рецензия
Для цитирования:
Пасулов Т.Х., Бахронов Б.И. Существование собственных значений тензорной суммы моделей Фридрихса с двумерными возмущениями. Наносистемы: физика, химия, математика. 2023;14(2):151-157. https://doi.org/10.17586/2220-8054-2023-14-2-151-157
For citation:
Rasulov T.H., Bahronov B.I. Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 per turbation. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):151-157. https://doi.org/10.17586/2220-8054-2023-14-2-151-157