Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Corrugated non-stationary optical fiber

https://doi.org/10.17586/2220-8054-2023-14-2-158-163

Abstract

Using numerical methods, we study the fractal properties of the optical paths difference for rays propagating in a model of a homogeneous optical fiber with periodically curved (corrugated) wall and other wall periodically oscillating according to the sine law. Also the angle of entry of the rays into the optical fiber and their coordinates in the exit plane is investigated.

About the Authors

T. Akhmadjanov
National University of Uzbekistan
Uzbekistan

Turgunali Akhmadjanov – Faculty of Physics, Department of Photonics

University, str.4, 100174, Tashkent



E. Yu. Rakhimov
National Scientific Research Institute of Renewable Energy Sources
Uzbekistan

Ergashali Yu. Rakhimov

Chingiz Aitmatov str. 2B, 100014, Tashkent



References

1. Medwin H., Clay C.S. Fundamentals of Acoustic Oceanography. Academic Press, San Diego, 1998, 739 p.

2. Unger H.G. Planar Optical Waveguides and Fibres. Oxford University Press, 1978, 770 p.

3. Singh M.Different dispersion compensation techniques in fiber optic communication system: A survey. Int. J. of Advanced Research in Electronics and Communication Engineering (IJARECE), 2015, 4 (8), P. 2236–2240.

4. Sharma R., Gupta A.K., Kaur S., Singh N. Performance Analysis of DCF Compensation Techniques. 2021 2nd Int. Conf. on Computational Methods in Science & Technology (ICCMST), Mohali, India, 17–18 December 2021, P. 158–161.

5. Ghosh A.K., Patel N. Changes in the characteristics of chaotic optical signals owing to propagation in optical fibers. Optics and Photonics for Information Processing XIII, 6 September 2019, 111360S.

6. Marcuse D. Coupled Mode Theory of Round Optical Fibers. Bell System Technical J., 2013, 52 (6), P. 817–842.

7. Garc´ ıa-Martin A., Torres J.A., S´aenz J.J., Nieto-Vesperinas M. Transition from diffusive to localized regimes in surface corrugated optical waveg uides. Appl. Phys. Lett., 1997, 71, 1912.

8. Chaikina E.I., Stepanov S., Navarrete A.G., M´ endez E.R., Leskova T.A. Formation of angular power profile via ballistic light transport in multi mode optical fibers with corrugated surfaces. Phys. Rev. B, 2005, 71, 085419.

9. Doppler J., et al. Reflection resonances in surface-disordered waveguides: strong higher-order effects of the disorder. New J. Phys., 2014, 16, 053026.

10. Akhmadjanov T., Rakhimov E., Otajanov D. Particle dynamics in corrugated rectangular billiard. Nanosystems: Phys., Chem., Math., 2015, 6 (2), P. 262–267.

11. Dietz O., Kewes G., Neitzke O., Benson O. Coupled-mode approach to square-gradient Bragg-reflection resonances in corrugated dielectric waveguides. Phys. Rev. A, 2015, 92, 043834.

12. Lipton R., Polizzi A., Thakur L. Novel metamaterial surface from perfectly conducting subwavelength corrugations. SIAM J. Appl. Math., 2017, 77 (4), P. 1269–1291.

13. Kovacs, B., Kraft F.A., Szabo Z., et al. Near cut-off wavelength operation of resonant waveguide grating biosensors. Sci. Rep., 2021, 11, 13091.

14. Higuita M.A.U., Bruhier H., Hochedel M., Kampfe Th., Vocanson F., et al. Resonant waveguide grating fabrication on planar and cylindrical substrates using a photosensitive TiO2 sol-gel approach. Optical Materials Express, 2021, 11 (1), P. 12–22.

15. Lobanov I.S., Trifanov A.I., Trifanova E.S., Popov I.Y., Fedorov E.G., Pravdin K.V., Moskalenko M.A. Photon generation in resonator with time dependent boundary conditions. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12 (1), P. 73–80.

16. Abdullaev S.S., Zaslavskii G.M. Nonlinear dynamics of rays in inhomogeneous media. Soviet J. of Experimental and Theoretical Physics, 1981, 53 (2), 265.

17. Zaslavsky G.M. Stochasticity of dynamical systems. Nauka, Moscow, 1984.

18. Abdullaev S.S., Zaslavski˘ ı G.M. Classical nonlinear dynamics and chaos of rays in problems of wave propagation in inhomogeneous media. Sov. Phys. Usp., 1991, 34, 645. [19] Leonel E.D., da Costa D.R., Dettmann C.P. Scaling invariance for the escape of particles from a periodically corrugated waveguide. Physics Letters A, 2012, 376, P. 421–425.

19. Ryabov A.B., Loskutov A. Time-dependent focusing billiards and macroscopic realization of Maxwell’s Demon. J. Phys. A: Math. Theor., 2010, 43, 125104.

20. Loskutov A.Yu. Dynamical chaos: systems of classical mechanics. Phys. Usp., 2007, 50, 939.

21. Matrasulov D.U., Yusupov J.R., Sabirov K.K., Sobirov Z.A. Time-dependent quantum graph. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (2), P. 173–181.


Review

For citations:


Akhmadjanov T., Rakhimov E.Yu. Corrugated non-stationary optical fiber. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):158-163. https://doi.org/10.17586/2220-8054-2023-14-2-158-163

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)