Генерация высших оптических гармоник в квантовом графе
https://doi.org/10.17586/2220-8054-2023-14-2-164-171
Аннотация
Рассмотрено генерация гармоник высокого порядка в квантовом графе, на примере квантового звездообразного графа, взаимодействующего с внешним монохроматическим оптическим полем. Используя полученные численно решения нестационарного уравнения Шредингера на квантовом графе, вычислено основные характеристики генерации высших гармоник. В частности, анализируется временная зависимость среднего дипольного момента и спектра генерации высших гармоник, определяемого как интенсивность генерируемого поля как функцию порядка гармоники. Обсуждено обобщение предложенной модели на случай других топологий графов и применение к проблеме настраиваемой генерации высших гармоник.
Об авторах
С. РахмановУзбекистан
И. Турсунов
Узбекистан
Х. Матёкубов
Узбекистан
Д. Матрасулов
Узбекистан
Список литературы
1. Boyd R.W. Nonlinear Optics, 2007, 3rd ed, Academic Press.
2. Tong X., Chu Sh. Theoretical study of multiple high-order harmonic generation by intense ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method. Chem. Phys. B, 1997, 217(2-3), P. 119–130.
3. Kostrykin R., Schrader R. Kirchhoff’s rule for quantum wires. J. Phys. A: Math. Gen, 1999, 32, P. 595–630. [4] Kottos T., Smilansky U. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs. Ann. Phys., 1999, 274, P. 76–124.
4. Gnutzmann S. and Smilansky U. Quantum graphs: Applications to quantum chaos and universal spectral statistics. Adv. Phys., 2006, 55, P. 527 625.
5. Gnutzmann S., Keating J.P., Piotet F. Eigenfunction statistics on quantum graphs. Ann. Phys., 2010, 325, P. 2595–2640.
6. Boman J., Kurasov P. Symmetries of quantum graphs and the inverse scattering problem. Adv. Appl. Math., 2005, 35, P. 58–70.
7. Hul O., Bauch S., Pako´ nski P., Savytskyy N., ˙ Zyczkowski K. and Sirko L. Experimental simulation of quantum graphs by microwave networks. Phys. Rev. E., 2004, 69, P. 056205/1-7.
8. Cheon T., Exner P., Turek O. Approximation of a general singular vertex coupling in quantum graphs. Ann.Phys., 2010, 325, P. 548–578.
9. Keating J.P. Fluctuation statistics for quantum star graphs. Quantum graphs and their applications. Contemp. Math., 2006, 415., P. 191–200.
10. Matrasulov D.U., Yusupov J.R., Sabirov K.K., Sobirov Z.A. Time-dependent Quantum Graph. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(2), P. 173–181.
11. Yusupov J.R., Sabirov K.K., Ehrhardt M., Matrasulov D.U. Transparent quantum graphs. Phys. Lett. A., 2019, 383, P. 2382–2388.
12. Matrasulov D.U., Sabirov K.K. and Yusupov J.R. PT-symmetric quantum graphs. J. Phys. A., 2019, 52, P. 155302/1-11.
13. Nikiforov D.S., Blinova I.V. and Popov I.Y. Schr¨ odinger and Dirac dynamics on time-dependent quantum graph. Indian J. Phys., 2019, 93(7), P. 913–920.
14. Yusupov J.R., Sabirov K.K., Asadov Q.U., Ehrhardt M. and Matrasulov D.U. Dirac particles in transparent quantum graphs: Tunable transport of relativistic quasiparticles in branched structures. Phys. Rev. E., 2020, 101, P. 062208/1-8.
15. Yusupov J.R., Sabirov K.K. and Matrasulov D.U. Dirac particles on periodic quantum graphs. Phys. Rev. E., 2021, 104, P. 014219/1-7.
16. Strelkov V.V., Platonenko V.T., Sterzhantov A.F. and Ryabikin M.Yu. Attosecond electromagnetic pulses: generation, measurement, and applica tion. Generation of high-order harmonics of an intense laser field for attosecond pulse production. Phys. Uspekhi, 2016, 59(5), P. 425–445.
17. Winterfeldt C., Spielmann C., Gerber G. Optimal control of high-harmonic generation. Rev. Mod. Phys., 2008, 80(2), P. 117–140.
18. Kohmoto M. Quantum wire networks with quantized Hall effect. J. Phys. Soc. Jpn., 1999, 62, P. 4001–4008.
19. Aharony A., Entin-Wohlman O. Discrete versus Continuous Wires on Quantum Networks. J. Phys. Chem. B, 2009, 113, P. 3676–3680.
20. Medina J., Green D., Chamon C. Networks of quantum wire junctions: A system with quantized integer Hall resistance without vanishing longi tudinal resistivity Phys. Rev. A., B, 2013, 87, P. 045128.
21. Caudrelier V., Mintchev M., Ragoucy E. Quantum wire network with magnetic flux. Phys. Lett. A., 2013, 377, P. 1788–1793.
22. Lepri S., Trono C., Giacomelli G. Complex Active Optical Networks as a New Laser Concept. Phys.Rev.Lett., 2017, 118, P. 123901.
23. Rotter S. Network lasers. Nature Photonics, 2019, 13, P. 140–145.
24. Brabec T., Krausz F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys., 2000, 72(2), P. 545–591.
25. Yousef I., et.al. Relativistic high-power laser matter interactions. Phys. Rep., 2006, 427(2-3), P. 41–155.
26. Winterfeldt C., Spielmann C., and Gerber G. Colloquium: Optimal control of high-harmonic generation. Rev. Mod. Phys., 2008, 80(1), P. 117–140.
27. Krausz F., Ivanov M. Attosecond physics. Rev. Mod. Phys., 2009, 81, P. 163–234.
28. Nisoli M., Sansone G. New frontiers in attosecond science Author links open overlay panel. Prog. Quant. Electr., 2009, 33, P. 17–59.
29. Kohler M.C., Pfeifer T., Hatsagortsyan K.Z.,Keitel C.H. Frontiers of Atomic High-Harmonic Generation. Advances In Atomic, Molecular, and Optical Physics, 2012, 61, P. 159–208.
30. Ahn D., Chuang S.L. Optical gain in a strained-layer quantum-well laser. IEEE J. Quantum Electron, 1988, 24, P. 2400–2406.
31. Rosencher E., Bois Ph. Model system for optical nonlinearities: Asymmetric quantum wells. Phys. Rev. B., 1991, 44, P. 11315–11327.
32. Milanovic V., Ikonic Z., Indjin D. Optimization of resonant intersubband nonlinear optical susceptibility in semiconductor quantum wells: The coordinate transform approach. Phys. Rev. B., 1996, 53, P. 10887–10893.
33. Xie W., J.Lumin. The nonlinear optical rectification of a confined exciton in a quantum dot. 131. P. 943–946.
34. Li B., Guo K-X., Zhang C.-J., Zheng Y.-B. The second-harmonic generation in parabolic quantum dots in the presence of electric and magnetic f ields. Phys. Lett. A, 2007, 367, P. 493–497.
35. Liu J-T., Su F-H., Wang H. Model of the optical Stark effect in semiconductor quantum wells: Evidence for asymmetric dressed exciton bands. Phys. Rev. B., 2009, 80, P. 113302/1-4.
36. Shao Sh., Guo K-X., Zhang Z-H., Li N., Peng Ch. Studies on the second-harmonic generations in cubical quantum dots with applied electric field. Physica B: Physics of Condensed Matter, 2011, 406, P. 393–396.
37. Karimi M.J., Keshavarz A., Second harmonic generation in asymmetric double semi-parabolic quantum wells: Effects of electric and magnetic f ields, hydrostatic pressure and temperature. Physica E, 2012, 44, P. 1900–1904.
38. Zhai W. A study of electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells. Physica B, 2014, 454, P. 50–55.
39. Bondarenko V., Zauzny M. Intrinsic optical intersubband bistability in quantum well structures: Role of multiple reflections. Phys. Rev. B., 2015, 91, P. 035303/1-20.
40. Kotova L.V., Platonov A.V., Kats V.N. Optical activity of quantum wells. Phys. Rev. B., 2016, 94, P. 165309/1-5.
41. Mohammadi S.A., Khordad R., Rezaei G. Optical properties of a semispherical quantum dot placed at the center of a cubic quantum box: Optical rectification, second and third-harmonic generations. Physica E, 2016, 76, P. 203–208.
42. Rakhmanov S., Matrasulov D., Matveev V.I. Quantum dynamics of a hydrogen-like atom in a time-dependent box: Cooling, compressing and diffusive ionization in non-adiabatic regime. Eur. Phys. J. D., 2018, 72 P. 177/1-8.
Рецензия
Для цитирования:
Рахманов С., Турсунов И., Матёкубов Х., Матрасулов Д. Генерация высших оптических гармоник в квантовом графе. Наносистемы: физика, химия, математика. 2023;14(2):164-171. https://doi.org/10.17586/2220-8054-2023-14-2-164-171
For citation:
Rakhmanov S.Z., Tursunov I.B., Matyokubov K.Sh., Matrasulov D.U. Optical high harmonic generation in a quantum graph. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):164-171. https://doi.org/10.17586/2220-8054-2023-14-2-164-171