Study of ion partitioning in nanoporous materials by analytical approach and molecular modeling
https://doi.org/10.17586/2220-8054-2023-14-2-172-177
Abstract
Physical and chemical processes that occur in nano-confined aqueous solutions, particularly the role of “solute-interface” and “solute-solute” interactions within nanopores, are the source of filtration selectivity and require further investigation. The goal is to clarify the validity of different approximations based on the macroscopic mean field approach by comparing them with computational techniques such as Monte Carlo (GCMC) and classical molecular dynamics (MD). These techniques are used to study the distribution of ions at the water/nanopore interface. At the molecular scale, the results show that the distribution of ions depends on their size, polarizability and the structure of water when it is explicitly added to the model, which cannot be reproduced by the primitive model using the GCMC and the mean field approach based on the Poisson Boltzmann equation.
About the Authors
J. DweikLebanon
Jalal Dweik – Professor in Mathematics and Physics
Zaytoun Abi-Samra, P.O. Box: 808, Tripoli
M. Koabazb
Lebanon
Mahmoud Koabaz – Assistant Professor in Mathematics and Physics
Zaytoun Abi-Samra, P.O. Box: 808, Tripoli
References
1. Dresner L., Kraus K.A. Ion exclusion and salt filtering with porous ion-exchange materials. J. Phys. Chem., 1963, 67, P. 990–998.
2. Jacazio G., Probstein R.F., Sonin A.A., Yung D. Electrokinetic salt rejection in hyperfiltration through porous materials: Theory and experiments. J. Phys. Chem., 1972, 76, P. 4015–4023.
3. Siwy Z., Fulinski A. Origin of Noise in Membrane Channel Currents. Phys. Rev. Lett., 2002, 89, P. 158101–158104.
4. Crozier P.S., Rowley R.L. Molecular dynamics simulation of continuous current flow through a model biological membrane channel. Phys. Rev. Lett., 2001, 86, P. 2467–2470.
5. Roux B., Karplus M. Molecular dynamics simulations of the gramicidin channel. Annu. Rev. Biophys. Biomol. Struct., 1994, 23, P. 731–761.
6. Jardat M., Hribar-Lee B., Vlachy V. Self-diffusion of ions in charged nanoporous media. Soft Matter., 2012, 8, P. 954–964.
7. Donnan F.G. The theory of membrane equilibrium and membrane potential in the presence of a non-dialyzable electrolyte. A contribution to physical-chemical physiology. Z. F¨ur Elektrochem. Und Angew. Phys. Chem., 1911, 17, P. 572–581.
8. Palmeri J., Blanc P., Larbot A., David P. Theory of pressure-driven transport of neutral solutes and ions in porous ceramic nanofiltration membranes. J. Membrane Sci., 1999, 160 (2), P. 141–170.
9. Chang C.W., Chu C.W., Su Y.S., Yeh L.H. Space charge enhanced ion transport in heterogeneous polyelectrolyte/alumina nanochannel membranes for high-performance osmotic energy conversion. J. Mater. Chem. A, 2022, 10, P. 2867–2875.
10. Jamnik B., Vlachy V.J. Ion Partitioning between Charged Micropores and Bulk Electrolyte Solution. Mixtures of Mono- and Divalent Counterions and Monovalent Co-Ions. Am. Chem. Soc., 1995, 117 (30), P. 8010–8016.
11. Dubois M., Zemb T., Belloni L., Deville A., Levitz P., Setton R. Osmotic pressure and salt exclusion in electrostatically swollen lamellar phases. J. Chem. Phys., 1992, 96, P. 2278–2286.
12. Hartnig C., Witschel C., Spohr E., Bunsenges Ber. Molecular dynamics study of electrolyte-filled pores. Phys. Chem., 1998, 102, P. 1689–1692.
13. Boiteux C., Kraszewski S., Ramseyer C., Girardet C. Ion conductance vs. pore gating and selectivity in KcsA channel: modeling achievements and perspectives. J. of Molecular Modeling, 2007, 13, P. 699–713.
14. Allen T.W., Kuyucak S., Chung S.H. Molecular dynamics study of the KcsA potassium channel. Biophys. Chem., 2000, 86, P. 1–14.
15. Compoint M., Carloni P., Ramseyer C., Girardet C. Molecular dynamics study of the KcsA channel at 2.0-angstrom resolution: stability and concerted motions within the pore. Biochimica Biophysica Acta– Biomembranes, 2004, 1661, P. 26–39.
16. Corry B., Allen T.W., Kuyucak S., Chung S.H. A model of calcium channels. Biochim. Biophys. Acta, 2000, 1509, P. 1–6.
17. Berendsen H.J.C., Postma J.P.M., Van Gunsteren W.F., Dinola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81 (8), P. 3684–3690.
18. Caldwell J.W., Kollman P.A. Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N Methylacetamide. J. Phys. Chem., 1995, 99 (16), P. 6208–6219.
19. Gupta A., Rajan A.G., Carter E.A., Stone H.A. Ionic Layering and Overcharging in Electrical Double Layers in a Poisson-Boltzmann Model. Phys. Rev. Lett., 2020, 125, 1103.
20. Caldwell J.W., Kollman P.A. Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N Methylacetamide. J. Phys. Chem., 1995, 99 (16), P. 6208–6219.
21. Hijnen H.J.M., Van Daalen J., Smit J.A.M.J. The application of the space-charge model to the permeability properties of charged microporous membranes. Colloid Interface Sci., 1985, 107, P. 525–539.
22. Palmeri J., Blanc P., Larbot A., David P. Theory of pressure-driven transport of neutral solutes and ions in porous ceramic nanofiltration membranes. J. Membrane Sci., 1999, 160, P. 141–170.
23. Case D.A., et al. AMBER9. University of California, San Francisco, 2006.
24. Jungwirth P., Tobias D.J. Specific ion effects at the air/water interface. Chem. Rev., 2002, 106, P. 1259–1281.
25. Chandler D. Interfaces and the driving force of hydrophobic assembly. Review Nature, 2005, 437, P. 640–647.
Review
For citations:
Dweik J., Koabazb M. Study of ion partitioning in nanoporous materials by analytical approach and molecular modeling. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):172-177. https://doi.org/10.17586/2220-8054-2023-14-2-172-177