Theoretical study of the EDFA optical amplifier implementation scheme improving the performance of a quantum key distribution system integrated with an WDM optical transport network
https://doi.org/10.17586/2220-8054-2023-14-2-178-185
Abstract
A version of an erbium doped fiber amplifier (EDFA) application scheme designed to increase the efficiency of the simultaneous quantum key distribution session and transmission of information by classical channels in a single optical fiber is explored. A theoretical study of the possibility to use EDFA in the explored way was conducted by numerical simulation methods. The mathematical model is based on the EDFA dynam ics equations and the equations that determine the secure key generation rate in case of the subcarrier-wave quantum key distribution. A method for determining the optimal parameters of the scheme under study is de scribed and the evaluation of the feasibility of using EDFA in the explored way is performed. A comparative analysis of the subcarrier-wave quantum key distribution system performance when integrated into an optical network is made in terms of the secure key generation rate for the cases when EDFA is either used or not. The results obtained demonstrate high efficiency of the scheme under study, i.e., the maximum achievable distance of the secure key distribution is increased while maintaining the efficiency of the information transmission.
Keywords
About the Authors
D. TupyakovRussian Federation
Daniil Tupyakov
Kronverkskiy, 49, St. Petersburg, 197101
N. Ivankov
Russian Federation
Nikita Ivankov
Kronverkskiy, 49, St. Petersburg, 197101
I. V. Vorontsova
Russian Federation
Irina Vorontsova
Kronverkskiy, 49, St. Petersburg, 197101
F. Kiselev
Russian Federation
Fedor Kiselev
Kronverkskiy, 49, St. Petersburg, 197101
V. Egorov
Russian Federation
Vladimir Egorov
Kronverkskiy, 49, St. Petersburg, 197101
References
1. Scarani V., Bechmann-Pasquinucci H., Cerf J.N., Duˇ sek M., L¨utkenhaus N., Peev M. The security of practical quantum key distribution. Reviews of Modern Physics, 2009, 81 (3), P. 1301–1350.
2. Pirandola S., Andersen U.L., Banchi L., Berta M., Bunandar D., Colbeck R., Englund D., GehringT., LupoC., Ottaviani C., Pereira J.L., Razavi M., Shamsul Shaari J., Tomamichel M., Usenko V.C., Vallone G., Villoresi P., Wallden P. Advances in quantum cryptography. Advances in Optics and Photonics, 2020, 12 (4), 1012.
3. Gisin N., Ribordy G., Tittel W., Zbinden H. Quantum cryptography. Reviews of Modern Physics, 2002, 74 (1), P. 145–196.
4. Mlejnek M., Kaliteevskiy N., Nolan D.A. Reducing spontaneous Raman scattering noise in high quantum bit rate QKD systems over optical fiber. 2017, URL: https://arxiv.org/ftp/arxiv/papers/1712/1712.05891.pdf.
5. Niu J.-N., Sun Y.-M., Cai C., Ji-Y.-F. Optimized channel allocation scheme for jointly reducing four-wave mixing and Raman scattering in the DWDM-QKDsystem. Applied Optics, 2018, 57 (27), 7987.
6. Kumar R., Qin H., All´eaume R. Coexistence of continuous variable QKD with intense DWDM classical channels. New J. of Physics, 2015, 17, 043027.
7. Gleim A.V., Egorov V.I., Nazarov Y.V., Smirnov S.V., Chistyakov V.V., Bannik O.I., Anisimov A.A., Kynev S.M., Ivanova A.E., Collins R.J., et al. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Optics Express, 2016, 24 (3), P. 2619–2633.
8. Merolla J., Mazurenko Y., Goedgebuer J.P. Quantum Gryptography using Frequency Modulation of Weak Ligh Pulses. Proceedings of European Quantum Electronics Conference. Glasgow, UK, Technical Digest of EQEC 1998, 1998, 101.
9. Choi I., Zhou Y.R., F.-Dynes J., Yuan Z., Klar A., Sharpe A., Plews A., Lucamarini M., Radig C., Neubert J., Griesser H., Eiselt M., Chunnilall C., Lepert G., Sinclair A., Elbers Z.-P., Lord A., Shields A. Field trial of a quantum secured 10 Gb/s DWDM transmission system over a single installed fiber. Optics Express, 2014, 22 (19), 23121.
10. Sharma R., Raghuwanshi S.K. Computer Model for EDFA Dynamics Over 1525-1560nm Band Using a Novel Multi-Wavelength MATLAB Simulink Test Bed for 8-Channels. IETE J. of Research, 2018, 64 (6), P. 814–831.
11. Pinter S., Jean J., Fernando X. A dynamic multi-wavelength simulink model for EDFA. Proceedings of Canadian Conference on Electrical and Computer Engineering 2004, Niagara Falls, Ontario, Canada, IEEE, 2004, P. 2077–2080.
12. Giles C.R., Desurvire E. Modeling erbium-doped fiber amplifiers. J. of Lightwave Technology, 1991, 9 (2), P. 271–283.
13. Lebedev V.F., Serduk K.V., Fomenko I.N. Laser Technology. St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, 2021, 45 p.
14. Kiselev F., Veselkova N., Goncharov R., Egorov V. A theoretical study of subcarrier-wave quantum key distribution system integration with an optical transport network utilizing dense wavelength division multiplexing. J. of Physics B: Atomic, Molecular and Optical Physics, 2021, 54 (13), 135502.
15. Pradhan D., Vivekanand M. Analysis and Review of EDFA. Int. J. of Computer Science and Network, 2015, 4 (6), P. 918–923.
Review
For citations:
Tupyakov D., Ivankov N., Vorontsova I.V., Kiselev F., Egorov V. Theoretical study of the EDFA optical amplifier implementation scheme improving the performance of a quantum key distribution system integrated with an WDM optical transport network. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):178-185. https://doi.org/10.17586/2220-8054-2023-14-2-178-185