Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Modeling the rarefied gas thermal conductivity in nanochannels

https://doi.org/10.17586/2220-8054-2023-14-2-186-194

Abstract

In the paper, the thermal conductivity of rarefied gases in nanochannels and in bulk was studied. The following gases Ar, Kr, Ne, Xe, O2, CH4 were considered. The evolution of gas molecules in phase space was calculated by the method of the stochastic molecular modelling. It was established that the thermal conductivity coefficient of the gas in the nanochannel is anisotropic. Anisotropy of the thermal conductivity is caused by the interaction of gas molecules with the channel walls. This interaction is described by the specular or diffuse laws of molecules reflection. The thermal conductivity of gases across the channel is significantly lower than along it. The anisotropy of the thermal conductivity persists even in microchannels, but it decreases with the increasing of the gas density. In fact, the thermal conductivity coefficient is not a gas property only, but of a gas+channel wall system.

About the Authors

V. Ya. Rudyak
Kutateladze Institute of Thermophysics of Siberian Branch of RAS; Novosibirsk State University of Architecture and Civil Engineering
Russian Federation

Valery Ya. Rudyak

Lavrentiev Avenue, 1, 630090, Novosibirsk

Leningradskaya Street, 113, 630008



E. V. Lezhnev
Novosibirsk State University of Architecture and Civil Engineering
Russian Federation

 Evgeny V. Lezhnev

Leningradskaya Street, 113, 630008, Novosibirsk



References

1. Li D. (Ed.) Encyclopedia of Microfluidics and Nanofluidics, Springer Science+Business Media, LLC, 2008, 2242 p.

2. Mawatar K.I., Tsukahara T., Sugii Y., Kitamori T. Extended-nano fluidic systems for analytical and chemical technologies. Nanoscale, 2010, 2(9), P. 1588–1595.

3. Reisner W., Pedersen J.N., Austin R.H. DNA confinement in nanochannels: Physics and biological applications. Reports Progress Phys., 2012, 75, Article ID: 106601.

4. David G.C., Paul V.B., Gang C., David R.C., Shanhui F., Kenneth E.G., Pawel K., William P.K., Gerald D.M., Arun M., Humphrey J.M., Simon R.P., Eric P., Li S. Nanoscale thermal transport. II. 2003–2012. App. Phys. Rev., 2014, 1, P. 011305.

5. Rudyak V.Ya., Minakov A.V., Modern Problems of Micro- and Nanofluidics, Science, Novosibirsk, 2016, 260 p.

6. Sofos F., Karakasidis T., Liakopoulos A. Transport properties of liquid argon in krypton nanochannels: Anisotropy and non-homogeneity intro duced by the solid walls. Int. J. Heat Mass Transfer, 2009, 52(3-4), P. 735–743.

7. Hyzorek K., Tretiakov K.V. Thermal conductivity of liquid argon in nanochannels from molecular dynamics simulations. J. Chem. Phys., 2016, 144, P. 94507.

8. Pourali M., Maghari A. Non-equilibrium molecular dynamics simulation of thermal conductivity and thermal diffusion of binary mixtures confined in a nanochannel. J. Chem. Phys., 2014, 444, P. 30–38.

9. Zhao Z., Sun C., Zhou R. Thermal conductivity of confined-water in graphene nanochannels. Int. J. Heat Mass Transfer, 2020, 152, P. 119502.

10. Kima K., Murphy T.E. Strong anisotropic thermal conductivity of nanoporous silicon. J. App. Phys., 2015, 118, P. 154304.

11. Rudyak V.Ya., Belkin A.A. Fluid viscosity under confined conditions. Doklady Phys., 2014, 59(12), P. 604–606.

12. Rudyak V.Ya., Belkin A.A. Statistical mechanics of transport processes of fluids under confined conditions. Nanosystems: Phys., Chem., Math., 2015, 6(3), P. 366–377.

13. Rudyak V.Ya., Belkin A.A. Molecular-dynamics simulation of fluid viscosity in nanochannels. Nanosystems: Phys., Chem., Math., 2018, 9(3), P. 349–355.

14. Zhao Z., Sun C., Zhou R. Thermal conductivity of confined-water in graphene nanochannels International. Int. J. Heat Mass Transfer, 2020, 152, P. 119502.

15. Barisik M., Kim B., Beskok A. Smart wall model for molecular dynamics simulations of nanoscale gas flows. Com. Comp. Phys., 2010, 7(5), P. 977–993.

16. Barisik M., Beskok A. Molecular dynamics simulations of shear-driven gas flows in nano-channels. Microfluid Nanofluid, 2011, 11, P. 611–622.

17. Barisik M., Beskok A. “Law of the nano-wall” in nano-channel gas flows. Microfluidics Nanofluidics, 2016, 20, P. 46.

18. Rabani R., Heidarinejad G., Harting J., Shirani E. Heat Conduction Characteristic of Rarefied Gas in Nanochannel. J. App. Fluid Mech., 2020, 13(1), P. 1-13.

19. Frijns A.J.H., Nedea S.V., Markvoort A.J., van Steenhoven A.A., Hilbers P.A.J. Dynamics and Monte Carlo Simulations for Heat Transfer in Micro and Nano-channels. ICCS, 2004, 3039, P. 661–666.

20. Graur I., Sharipov F. Non-isothermal flow of rarefied gas through a long pipe with elliptic cross section. Microfluid Nanofluid, 2009, 6, P. 267–275.

21. Sharipov F. Gaseous mixtures in vacuum systems and microfluidics. J. Vacuum Sci. Technology A, 2013, 31, P. 050806.

22. Hwang G.S., Kaviany M.. Molecular dynamics simulation of effective thermal conductivity of vapor-filled nanogap and nanocavity. J. App. Phys., 2009, 106, P. 024317.

23. Rudyak V.Ya., Lezhnev E.V.. Stochastic method for modeling rarefied gas transport coefficients. J. Phys.: Conf. Series, 2016, 738, P. 012086.

24. Rudyak V.Ya., Lezhnev E.V. Statistical simulation of the transport coefficients of the rarefied gases. J. Phys.: Conf. Series, 2018, 1105, P. 012122.

25. Rudyak V.Ya., Lezhnev E.V. Stochastic algorithm for simulating gas transport coefficients. J. Comp. Physics, 2018, 355, P. 95–103.

26. Rudyak V.Ya., Lezhnev E.V. Stochastic molecular modeling the transport coefficients of rarefied gas and gas nanosuspensions. Nanosystems: Phys., Chem., Math., 2020, 46, P. 51–54.

27. Rudyak V.Ya., Lezhnev E.V. Viscosity of Gases in Nanochannels. Tech. Phys. Lett., 2020, 46(10), P. 1045–1048.

28. Ferziger J., Kaper H. Mathematical Theory of Transport Processes in gases, Elsevier Science Publishing Co Inc., 1972, 579 p.

29. Chapman S., Cowling T.G. The Mathematical Theory of Non-uniform Gases, Cambridge University Press, Cambridge, 1990, 423 p.

30. Zubarev D.N., Nonequilibrium Statistical Thermodynamics, Consultants Bureau, N.Y., 1974, 489 p.

31. Evans D.J., Morriss G.P. Statistical Mechanics of Nonequilibrium Liquids, Elsevier, 2013, 316 p.

32. Allen M.P., Tildesley D.J. Computer Simulation of Liquids, Oxford University Press, Oxford, 2017. 640 p.

33. Ernst M.H. Formal theory of transport coefficients to general order in the density. Physica, 1966, 32(2), P. 209–243.

34. Khon’kin A.D. Equations for space-time and time correlation functions and proof of the equivalence of results of the Chapman-Enskog and time correlation methods. Theoretical Math. Phys., 1970, 5, P. 1029–1037.

35. Rudyak V.Ya., Belkin A.A., Ivanov D.A., Egorov V.V. The simulation of transport processes using the method of molecular dynamics. Self diffusion coefficient. High Temperature, 2008, 46(1), P. 30–39.

36. Klimontovich Y.L. Kinetic Theory of Nonideal Gases and Nonideal Plasmas, Elsevier Ltd., 1982, 328 p.

37. Rudyak V.Ya. Statistical Theory of Dissipative Processes in Gases and Liquids, Science, Novosibirsk, 1987, 269 p.

38. Cercignani C. Theory and Application of the Boltzmann Equation, Scottish Academic Press, 1975, 415 p.

39. Sone Y. Molecular Gas Dynamics: Theory, Techniques, and Applications, Birkhauser, 2007, 658 p.

40. Rapaport D.C. The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 1995, 549 p.

41. Grigoriev I.S. et al. Handbook of Physical Quantities, CRC Press, 1997, 1548 p.

42. Rabinovich V.A. Thermophysical Properties of Neon, Argon, Krypton, and Xenon, Hemisphere Publishing Corporation, 1988, 604 p.


Review

For citations:


Rudyak V.Ya., Lezhnev E.V. Modeling the rarefied gas thermal conductivity in nanochannels. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):186-194. https://doi.org/10.17586/2220-8054-2023-14-2-186-194

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)