Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Effect of structural parameters, and spin-orbit interaction on the electronic properties of double quantum wire systems in the presence of external magnetic field

https://doi.org/10.17586/2220-8054-2024-15-5-658-669

Abstract

This study explores the effect of the structural parameters of the confining potential and external magnetic field on the electronic properties of a double quantum wire (DQW) system. Using theoretical analysis and graphical representations, we investigate the effects of varying parameters such as structural parameters (µ and λ) on the confinement potential profiles, probability density distributions and energy spectra of DQWs. Furthermore, we investigate the effect of variation of the confinement potential, the Rashba spin-orbit coupling and the external magnetic field on the energy spectra and the local density of states of the system. The changes in the energy spectra and the local density of states of the system due to Rashba spin-orbit coupling, and the external magnetic field were highlighted. The shifts and variations in energy and in the local density of states were discussed in detail. Our research results provide valuable insights into possibility of using the structural parameters and the external magnetic fields for control the electronic properties of the double quantum wire system.

About the Authors

Mahmoud Ali
An-Najah National University
Palestinian Territory, Occupied

Mahmoud Ali – Physics Department

 



Mohammad Elsaid
An-Najah National University
Palestinian Territory, Occupied

Mohammad Elsaid – Physics Department

 



References

1. Baghramyan H.M., Barseghyan M.G., Kirakosyan A.A., Restrepo R.L., Mora-Ramos M.E., Duque C.A. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration. J. of Luminescence, 2014, 145, P. 676-683.

2. Dakhlaoui H. Linear and nonlinear optical absorption coefficients and refractive index changes in GaN/AlxGa(1−x)N double quantum wells operating at 1.55 µm. J. of Applied Physics, 2015, 117 (13), 135705.

3. Kolokolov K.I., Beneslavski S.D., Minina N.Y., Savin A.M. Far-infrared intersubband absorption in p-type GaAs/AlxGa1−xAs single heterojunctions under uniaxial compression. Physical Review B, 2001, 63 (19), 195308.

4. Panda M., Das T., Panda B.K. Nonlinear optical properties in the laser-dressed two-level AlxGa1−xN/GaN single quantum well. Int. J. of Modern Physics B, 2018, 32 (4), 1850032.

5. Liao Q.L., Jiang H., Zhang X.W., Qiu Q.F., Tang Y., Yang X.K., Liu Y.L., Huang W.H. A single nanowire sensor for intracellular glucose detection. Nanoscale, 2019, 11 (22), P. 10702–10708.

6. Chen W., Cabarrocas P.R. Rational design of nanowire solar cells: from single nanowire to nanowire arrays. Nanotechnology, 2019, 30 (19), 194002.

7. Robertson K.W., LaPierre R.R., Krich J.J. Efficient wave optics modeling of nanowire solar cells using rigorous coupled-wave analysis. Optics Express, 2019, 27 (4), A133–147.

8. Espinet-Gonzalez P., Barrigon E., Otnes G., Vescovi G., Mann C., France R.M., Welch A.J., Hunt M.S., Walker D., Kelzenberg M.D., ´ Aberg I. ˚ Radiation tolerant nanowire array solar cells. ACS Nano, 2019, 13 (11), P. 12860–12869.

9. Hsu C.L., Wang Y.C., Chang S.P., Chang S.J. Ultraviolet/visible photodetectors based on p–n NiO/ZnO nanowires decorated with Pd nanoparticles. ACS Applied Nano Materials, 2019, 2 (10), P. 6343–6351.

10. Chen Y., Hrachowina L., Barrigon E., Beech J.P., Alcer D., Lyttleton R., Jam R.J., Samuelson L., Linke H., Borgstrom M. Semiconductor nanowire ¨ array for transparent photovoltaic applications. Applied Physics Letters, 2021, 118 (19).

11. Wu Y., Yang P. Direct observation of vapor- liquid- solid nanowire growth. J. of the American Chemical Society, 2001, 123 (13), P. 3165–3166.

12. Pevzner A., Engel Y., Elnathan R., Ducobni T., Ben-Ishai M., Reddy K., Shpaisman N., Tsukernik A., Oksman M., Patolsky F. Knocking down highly-ordered large-scale nanowire arrays. Nano letters, 2010, 10 (4), P. 1202–1208.

13. Madaria A.R., Yao M., Chi C., Huang N., Lin C., Li R., Povinelli M.L., Dapkus P.D., Zhou C. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth. Nano Letters, 2012, 12 (6), P. 2839–2845.

14. No Y.S., Gao R., Mankin M.N., Day R.W., Park H.G., Lieber C.M. Encoding active device elements at nanowire tips. Nano Letters, 2016, 16 (7), P. 4713–4719.

15. Chaure S., Chaure N.B., Pandey R.K. Self-assembled nanocrystalline CdSe thin films. Physica E: Low-dimensional Systems and Nanostructures, 2005, 28 (4), P. 439–446.

16. Fischer S.F., Apetrii G., Kunze U., Schuh D., Abstreiter G. Tunnel-coupled one-dimensional electron systems with large subband separations. Physical Review B, 2006, 74 (11), 115324.

17. Wang D.W., Mishchenko E.G., Demler E. Pseudospin ferromagnetism in double-quantum-wire systems. Physical Review Letters, 2005, 95 (8), 086802.

18. Karaaslan Y., Gisi B., Sakiroglu S.E., Kasapoglu E.S., Sari H.U., Sokmen I. Rashba spin-orbit coupling effects on the optical properties of double ¨ quantum wire under magnetic field. Superlattices and Microstructures, 2016, 93, P. 32–39.

19. Gudmundsson V., Tang C.S. Magnetotransport in a double quantum wire: Modeling using a scattering formalism built on the Lippmann-Schwinger equation. Physical Review B-Condensed Matter and Materials Physics, 2006, 74 (12), 125302.

20. Abdullah N.R., Tang C.S., Gudmundsson V. Time-dependent magnetotransport in an interacting double quantum wire with window coupling. Physical Review B – Condensed Matter and Materials Physics, 2010, 82 (19), 195325.

21. Liu G., Liu R., Chen G., Zhang Z., Guo K., Lu L. Nonlinear optical rectification and electronic structure in asymmetric coupled quantum wires. Results in Physics, 2020, 17, 103027.

22. Su Y., Guo K., Liu G., Yang T., Yu Q., Hu M., Yang Y. Nonlinear optical properties of semiconductor double quantum wires coupled to a quantum-sized metal nanoparticle. Optics Letters, 2020, 45 (2), P. 379–382.

23. Gisi B., Karaaslan Y., Sakiroglu S.E., Kasapoglu E.S., Sari H.U., Sokmen I. Effects of an in-plane magnetic field on the energy dispersion, spin ¨ texturing and conductance of double quantum wires. Superlattices and Microstructures, 2016, 91, P. 391–400.

24. Moon J.S., Blount M.A., Simmons J.A., Wendt J.R., Lyo S.K., Reno J.L. Magnetoresistance of one-dimensional subbands in tunnel-coupled double quantum wires. Physical Review B, 1999, 60 (16), 11530.

25. Bielejec E., Reno J.L., Lyo S.K., Lilly M.P. Tunneling spectroscopy in vertically coupled quantum wires. Solid State Communications, 2008, 147 (3–4), P. 79–82.

26. Huang D., Lyo S.K., Thomas K.J., Pepper M. Field-induced modulation of the conductance, thermoelectric power, and magnetization in ballistic coupled double quantum wires under a tilted magnetic field. Physical Review B, 2008, 77 (8), 085320.

27. Karaaslan Y., Gisi B., Sakiroglu S.E., Kasapoglu E.S., Sari H.U., Sokmen I. Electric and magnetic field modulated energy dispersion, conductivity ¨ and optical response in double quantum wire with spin-orbit interactions. Physics Letters A, 2018, 382 (7), P. 507–515.

28. Kumar S., Kumar M., Kumar A. Combined effect of rashba spin-orbit interaction, hydrostatic pressure and temperature on energy dispersion based ballistic conductance of InAs tunnel-coupled (double) quantum wire under exterior magnetic and electric field. Physica B: Condensed Matter, 2024, 677, 415715.

29. Korepov S.V., Liberman M.A. Tunnel-coupled double quantum wires in a magnetic field: electron scattering on impurities and boundary roughness. Physica B: Condensed Matter, 2002, 322 (1–2), P. 92–109.

30. Sharma R. Impurity-modulated physical and transport properties in a InxGa1−xAs double quantum wire. Physica B: Condensed Matter, 2023, 659, 414845.

31. Naydenov B., Boland J.J. Variable-height scanning tunneling spectroscopy for local density of states recovery based on the one-dimensional WKB approximation. Physical Review B, 2010, 82 (24), 245411.

32. Widmer R., Groning P., Feuerbacher M., Gr ¨ oning O. Experimental signatures of spiky local density of states in quasicrystals. ¨ Physical Review B, 2009, 79 (10), 104202.

33. Mart´ın-Jimenez A., Fern ´ andez-Dom ´ ´ınguez A.I., Lauwaet K., Granados D., Miranda R., Garc´ıa-Vidal F.J., Otero R. Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM. Nature Communications, 2020, 11 (1), P. 1–8.

34. Ivanov D.A., Ostrovsky P.M., Skvortsov M.A. Correlations of the local density of states in quasi-one-dimensional wires. Physical Review B – Condensed Matter and Materials Physics, 2009, 79 (20), 205108.

35. Ignatchenko V.A., Tsikalov D.S. Local density of states in one-dimensional photonic crystals and sinusoidal superlattices. Physics Procedia, 2017, 86, P. 113–116.

36. Segovia-Chaves F., Vinck-Posada H., Navarro-Baron E.P. Local density of states in a one-dimensional photonic crystal with a semiconducting ´ cavity. Results in Physics, 2022, 33, 105129.

37. Bena C., Kivelson S.A. Quasiparticle scattering and local density of states in graphite. Physical Review B, 2005, 72 (12), 125432.

38. Shimomura Y., Takane Y., Wakabayashi K. Electronic states and local density of states in graphene with a corner edge structure. J. of the Physical Society of Japan, 2011, 80 (5), 054710.

39. Karaaslan Y., Gisi B., Sakiroglu S., Kasapoglu E.S., Sari H.U., Sokmen I. Spin–orbit interaction and magnetic field effects on the energy dispersion ¨ of double quantum wire. Superlattices and Microstructures, 2015, 85, P. 401–409.

40. Hosseinpour P. Effect of Gaussian impurity parameters on the valence and conduction subbands and thermodynamic quantities in a doped quantum wire. Solid State Communications, 2020, 322, 114061.

41. Chen Q., Li L.L., Peeters F.M. Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges. Physical Review B, 2018, 97 (8), 085437.

42. Gradshteyn I.S., Ryzhik I.M., Romer R.H. Tables of Integrals, Series, and Products. American Association of Physics Teachers: College Park, MD, USA, 1988.

43. Nilsson H.A., Samuelsson P., Caroff P., Xu H.Q. Supercurrent and multiple Andreev reflections in an InSb nanowire Josephson junction. Nano Letters, 2012, 12 (1), P. 228–233.


Review

For citations:


Ali M., Elsaid M. Effect of structural parameters, and spin-orbit interaction on the electronic properties of double quantum wire systems in the presence of external magnetic field. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):658-669. https://doi.org/10.17586/2220-8054-2024-15-5-658-669

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)