Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Simulation of Bessel plasmon polariton field formation in a dielectric-metal structure

https://doi.org/10.17586/2220-8054-2024-15-5-670-674

Abstract

We study the conditions for the formation and transformation of the Bessel plasmon-polariton field in a dielectric-metal structure excited by a Bessel light beam with arbitrary polarization. The effect of the metal layer thickness on the resulting plasmon field structure is investigated. The formation of Bessel plasmonpolaritons in a scheme consisting of a conical axicon with its base in contact with a silver layer of defined thickness is simulated.

About the Author

Nguyen Pham Quynh Anh
SaiGon University
Viet Nam

Nguyen Pham Quynh Anh – Faculty of Electronics and Telecommunications

273 An Duong Vuong, Dist. 5, Ho Chi Minh City



References

1. Agranovich V.M., Mills D.L. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces. Amsterdam, North-Holland, 1982, 734 p.

2. Boardman A.D. Electromagnetic Surface Modes. New York, John Wiley & Sons, 1982, 786 p.

3. Zhang P. [et al.]. In-Plane Radiation of Surface Plasmon Polaritons Excited by Free Electrons. Micromachines, 2024, 15(6), 723 p.

4. Aftab M., [et al.]. Surface Plasmon Excitation: Theory, Configurations, and Applications. Plasmonics, 2024, 19, P. 1701–1719.

5. Rockstuhl C., Fahr S., Lederer F. Surface Plasmon Polaritons in Metallic Nanostructures: Fundamentals and Their Application to Thin-Film Solar Cells. Springer Series in Optical Sciences, 2012 (SSOS,volume 165).

6. Talles E.M. Marques, [et al.]. Tunable Surface Plasmon-Polaritons Interaction in All-Metal Pyramidal Metasurfaces: Unveiling Principles and Significance for Biosensing Applications. ACS Appl. Opt. Mater., 2024, 2(7), P. 1374–1381.

7. Wang S., Zhao C., Li X. Dynamical Manipulation of Surface Plasmon Polaritons. Appl. Sci., 2019, 9(16), P. 3297.

8. Jiang J.X., Chen Y.G. Generating Surface Plasmon Polariton Airy Beam with Dielectric Relief Holographical Structures. Plasmonics, 2020, 15, P. 1683–1688.

9. Qiu P., [et al.]. Polarization Controllable Device for Simultaneous Generation of Surface Plasmon Polariton Bessel-Like Beams and Bottle Beams. Nanomaterials, 2018, 8(12), P. 975.

10. Knyazev B.A., [et al.]. Generation of Terahertz Surface Plasmon Polaritons Using Nondiffractive Bessel Beams with Orbital Angular Momentum. Phys.Rev.Lett., 2015, 115, P. 163901.

11. Zhan Q. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Optics Letters, 2006, 31, P. 1726–1728.

12. Kurilkina S.N., Belyi V.N., Kazak N.S. Features of evanescent Bessel light beams formed in structures containing a dielectric layer. Optics Communications, 2010, 283, P. 3860–3868.

13. Jiefeng X., Quing L., Jia W. Numerical simulation of evanescent Bessel beams and apodization of evanescent field in near-field optical virtual probe. Proceedings of the SPIE, 2005, 5635, P. 42–47.

14. Novitsky A.V., Barkovsky L.M. Total internal reflection of vector Bessel beams: Imbert–Fedorov shift and intensity transformation. Journal of Optics A Pure and Applied Optics, 2008, 10, P. 075006-1–075006-7.

15. Liu L., [et al.]. Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials. Mater. Horiz, 2017, 4, P. 290– 296.

16. Carlos J., [et al.]. Nondiffracting Bessel plasmons. Opt. Expr., 2011, 19(20), P. 19572–19581.


Review

For citations:


Quynh Anh N.P. Simulation of Bessel plasmon polariton field formation in a dielectric-metal structure. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):670-674. https://doi.org/10.17586/2220-8054-2024-15-5-670-674

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)