Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Hidden polarization in open quantum systems

https://doi.org/10.17586/2220-8054-2023-14-2-626-632

Abstract

In this work, we explore the master equation governing open quantum systems dynamics in an alternative form, which preserves the normal-ordered representation of the averaged normal-ordered operators. We derive a linear system of differential equations for the fourth-order moments of corresponding bosonic operators. Polarization moments of the first and the second orders are investigated using plane rotation transformation. We also evaluate the dynamics of the hidden polarization in comparison with the dynamics of usual polarization within open quantum dynamics.

About the Authors

A. D. Vatutin
ITMO University
Russian Federation

Alexander D. Vatutin

Kronverkskiy 49, St.-Petersburg



G. P. Miroshnichenko
ITMO University
Russian Federation

George P. Miroshnichenko

Kronverkskiy 49, St.-Petersburg



A. I. Trifanov
ITMO University
Russian Federation

Alexander I. Trifanov

Kronverkskiy 49, St.-Petersburg



References

1. Pirandola S., Eisert J., Weedbrook C., Furusawa A., Braunstein S.L. Advances in quantum teleportation. Nat. Photon., 2015, 9, P. 641–652.

2. Gyongyosi L., Imre S. A survey on quantum computing technology. Comput. Sci. Rev., 2019, 31, P. 51–71.

3. Pirandola S., Andersen U., Banchi L., Berta M., Bunandar D., Colbeck R., Englund D., Gehring T., Lupo C., Ottaviani C., Pereira J. Advances in quantum cryptography. Adv. Opt. Photon., 2020, 12, P. 1012–1236.

4. Lvovsky A.I., Sanders B.C., Tittel W. Optical quantum memory. Nat. Photon., 2009, 3, P. 706–714.

5. Gaidash A., Kozubov A., Miroshnichenko G. Dissipative dynamics of quantum states in the fiber channel. Phys. Rev. A, 2020, 102, 023711.

6. Bonetti J., Hernandez S.M., Grosz D.F. Master equation approach to propagation in nonlinear fibers. Opt. Lett., 2021, 46, P. 665–668.

7. Pearle P. Simple derivation of the Lindblad equation. Eur. J. Phys., 2012, 33, P. 805–822.

8. Albash T., Boixo S., Lidar D.A., Zanardi P. Quantum adiabatic Markovian master equations. New J. Phys., 2012, 14, 123016.

9. McCauley G., Cruikshank B., Bondar D.I., Jacobs K. Accurate Lindblad-form master equation for weakly damped quantum systems across all regimes. NPJ Quantum Inf., 2020, 6, P. 74.

10. Miroshnichenko G. Decoherence of a one-photon packet in an imperfect optical fiber. Bull. Russ. Acad. Sci., 2018, 82, P. 1550–1555.

11. Kozubov A., Gaidash A., Miroshnichenko G. Quantum model of decoherence in the polarization domain for the fiber channel. Phys. Rev. A, 2019, 99, 053842.

12. Miroshnichenko G.P. Hamiltonian of photons in a single-mode optical fiber for quantum communications protocols. Opt. Spectrosc., 2012, 112, P. 777–786.

13. Lu H.-X., Yang J., Zhang Y.-D., Chen Z.-B. Algebraic approach to master equations with superoperator generators of su(1,1) and su(2) Lie algebras. Phys. Rev. A, 2003, 67, 024101.

14. Tay B.A., Petrosky T. Biorthonormal eigenbasis of a Markovian master equation for the quantum Brownian motion. J. Math. Phys., 2008, 49, 113301.

15. Honda D., Nakazato H., Yoshida M. Spectral resolution of the Liouvillian of the Lindblad master equation for a harmonic oscillator. J. Math. Phys., 2010, 51, 072107.

16. Tay B.A. Eigenvalues of the Liouvillians of quantum master equation for a harmonic oscillator. Physica A, 2020, 556, 124768.

17. Shishkov V.Y., Andrianov E.S., Pukhov A.A., Vinogradov A.P., Lisyansky A.A. Perturbation theory for Lindblad superoperators for interacting open quantum systems. Phys. Rev. A, 2020, 102, 032207.

18. Teuber L., Scheel S. Solving the quantum master equation of coupled harmonic oscillators with Lie-algebra methods. Phys. Rev. A, 2020, 101, 042124.

19. Gaidash A., Kozubov A., Miroshnichenko G., Kiselev A.D. Quantum dynamics of mixed polarization states: effects of environment-mediated intermode coupling. JOSA B, 2021, 38 (9), 425226.

20. Klyshko D.M. Polarization of light: fourth-order effects and polarization-squeezed states. Zh. Eksp. Teor. Fiz., 1997, 111, P. 1955–1983.

21. Miroshnichenko G.P. Parameterization of an interaction operator of optical modes in a single-mode optical fiber. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (6), P. 857–865.

22. Vatutin A.D., Miroshnichenko G.P., Trifanov A.I. Master equation for correlators of normal-ordered field mode operators. Nanosystems: Physics, Chemistry, Mathematics, 2022, 13 (6), P. 628–631.

23. Kozlov G.G., Ryzhov I.I., Tzimis A., Hatzopoulos Z., Savvidis P.G., Kavokin A.V., Bayer M., Zapasskii V.S. Hidden polarization of unpolarized light. Phys. Rev. A, 2018, 98 (4), 043810.

24. De la Hoz P., Bjork G., Klimov A.B., Leuchs G., Sanchez-Soto L.L. Unpolarized states and hidden polarization. Phys. Rev. A, 2014, 90, 043826.

25. Ryzhov I.I., Glazov M.M., Kavokin A.V., Kozlov G.G., Aßmann M., Tsotsis P., Hatzopoulos Z., Savvidis P.G., Bayer M., Zapasskii V.S. Spin noise of a polariton laser. Phys. Rev. B, 2016, 93, 241307.


Review

For citations:


Vatutin A.D., Miroshnichenko G.P., Trifanov A.I. Hidden polarization in open quantum systems. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(6):626-632. https://doi.org/10.17586/2220-8054-2023-14-2-626-632

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)