Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Physicochemical properties and biological activity of novel cerium oxide nanoparticles modified with pyrroloquinoline quinone

https://doi.org/10.17586/2220-8054-2024-15-5-683-692

Abstract

Nanoscale cerium oxide (CeO2) is a bioavailable inorganic nanozyme exhibiting pronounced redox activity and capable of acting as a delivery system for bioactive compounds. We have synthesized and characterized novel CeO2 nanoparticles modified with pyrroloquinoline quinone (CeO2@PQQ). TEM analysis revealed the diameter of the CeO2@PQQ NPs to be approximately 4 nm, with a hydrodynamic diameter of 62 nm (DLS). Furthermore, the zeta potential was found to be −38 mV (ELS), and FTIR analysis confirmed the adsorption of PQQ on the surface of CeO2 NPs. The results demonstrated that CeO2@PQQ NPs exhibited no cytotoxic effects on L929 cells within the concentration range of 0.1 – 10 µM and did not adversely affect the mitochondrial function of the cells. It was demonstrated that CeO2@PQQ NPs exhibited protective effects against L929 cells when induced with oxidative stress (200 µM H2O2), leading to preservation of cell mitochondrial potential levels up to 76 % of control and cell viability up to 78 % before and after incubation with CeO2@PQQ NPs. The results indicate that CeO2@PQQ NPs can be regarded as a novel hybrid nanosystem that exhibits mitochondrial-directed control of oxidative stress.

About the Authors

Elizaveta A. Zamyatina
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Russian Federation

Elizaveta A. Zamyatina 

Institutskaya str., 3, Pushchino, 142290



Olga A. Goryacheva
Saratov State University named after N. G. Chernyshevsky, Chemistry Institute
Russian Federation

Olga A. Goryacheva 

Astrakhanskaya 83, Saratov, 410012



Nelli R. Popova
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Russian Federation

Nelli R. Popova

Institutskaya str., 3, Pushchino, 142290



References

1. Yang S., Lian G. ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem, 2020, 467, P. 1–12.

2. Ott M., Gogvadze V., Orrenius S., Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis, 2007, 12, P. 913–922.

3. Jomova K., Raptova R., Alomar S.Y., Alwasel S.H., Nepovimova E., Kuca K., Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol, 2023, 97, P. 2499–2574.

4. Kowalczyk P., Sulejczak D., Kleczkowska P., Bukowska-Osko I., Kucia M., Popiel M., Wietrak E., Kramkowski K., Wrzosek K., Kaczy ´ nska K. ´ Mitochondrial oxidative stress—A causative factor and therapeutic target in many diseases. IJMS, 2021, 22, 13384.

5. Liu Y., Fiskum G., Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. of Neurochemistry, 2002, 80, P. 780–787.

6. Lennicke C., Cocheme H.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. ´ Molecular Cell, 2021, 81, P. 3691–3707.

7. Newmeyer D.D., Ferguson-Miller S. Mitochondria. Cell, 2003, 112, P. 481–490.

8. Mailloux R.J. An Update on Mitochondrial Reactive Oxygen Species Production. Antioxidants, 2020, 9, 472.

9. Filograna R., Mennuni M., Alsina D., Larsson N. Mitochondrial DNA copy number in human disease: the more the better? FEBS Letters, 2021, 595, P. 976–1002.

10. Wei W., Chinnery P.F. Inheritance of mitochondrial DNA in humans: implications for rare and common diseases. J. Intern. Med., 2020, 287, P. 634–644.

11. Pereira C.V., Gitschlag B.L., Patel M.R. Cellular mechanisms of mtDNA heteroplasmy dynamics. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, P. 510–525.

12. Mustafa M.F., Fakurazi S., Abdullah M.A., Maniam S. Pathogenic Mitochondria DNA Mutations: Current Detection Tools and Interventions. Genes, 2020, 11, 192.

13. Pisoschi A.M., Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. European J. of Medicinal Chemistry, 2015, 97, P. 55–74.

14. Elsayed Azab A., Adwas A.A., Ibrahim Elsayed A.S., Adwas A.A., Ibrahim Elsayed A.S., Quwaydir F.A. Oxidative stress and antioxidant mechanisms in human body. JABB, 2019, 6, P. 43–47.

15. Nandi A., Yan L.-J., Jana C.K., Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 2019, P. 1–19.

16. Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. of Medicine, 2018, 54, P. 287–293.

17. Li C.-W., Li L.-L., Chen S., Zhang J.-X., Lu W.-L. Antioxidant nanotherapies for the treatment of inflammatory diseases. Front. Bioeng. Biotechnol., 2020, 8, 200.

18. Kim Y.G., Lee Y., Lee N., Soh M., Kim D., Hyeon T. Ceria-based therapeutic antioxidants for biomedical applications. Advanced Materials, 2024, 36, 2210819.

19. Khalil I., Yehye W.A., Etxeberria A.E., Alhadi A.A., Dezfooli S.M., Julkapli N.B.M., Basirun W.J., Seyfoddin A. Nanoantioxidants: Recent trends in antioxidant delivery applications. Antioxidants, 2019, 9, 24.

20. Celardo I., Pedersen J.Z., Traversa E., Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011, 3, 1411.

21. Popov A.L., Andreeva V.V., Khohlov N.V., Kamenskikh K.A., Gavrilyuk V.B., Ivanov V.K. Comprehensive cytotoxicity analysis of polysaccharide hydrogel modified with cerium oxide nanoparticles for wound healing application. Nanosystems: Phys. Chem. Math., 2021, 12, P. 329–335.

22. Li F., Yang L., Zou L., Wu Y., Hu C., He J., Yang X. Decreasing crystallinity is beneficial to the superoxide dismutase-like activity of ceria nanoparticles. ChemNanoMat, 2022, 8, e202100466.

23. Shcherbakov A.B., Reukov V.V., Yakimansky A.V., Krasnopeeva E.L., Ivanova O.S., Popov A.L., Ivanov V.K. CeO2 Nanoparticle-containing polymers for biomedical applications: A Review. Polymers, 2021, 13, 924.

24. Filippova A.D., Baranchikov A.E., Ivanov V.K. Enzyme-like activity of cerium dioxide colloidal solutions stabilized with L-Malic acid. Colloid J., 2023, 85, P. 782–794.

25. Ge X., Cao Z., Chu L. The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants, 2022, 11, 791.

26. Corsi F., Deidda Tarquini G., Urbani M., Bejarano I., Traversa E., Ghibelli L. The impressive anti-inflammatory activity of cerium oxide nanoparticles: more than redox? Nanomaterials, 2023, 13, 2803.

27. Sozarukova M.M., Kozlova T.O., Beshkareva T.S., Popov A.L., Kolmanovich D.D., Vinnik D.A., Ivanova O.S., Lukashin A.V., Baranchikov A.E., Ivanov V.K. Gadolinium Doping Modulates the Enzyme-like Activity and Radical-Scavenging Properties of CeO2 Nanoparticles. Nanomaterials, 2024, 14, 769.

28. Chukavin N.N., Filippova K.O., Ermakov A.M., Karmanova E.E., Popova N.R., Anikina V.A., Ivanova O.S., Ivanov V.K., Popov A.L. Redox-active cerium fluoride nanoparticles selectively modulate cellular response against X-ray irradiation In Vitro. Biomedicines, 2023, 12, 11.

29. Akagawa M., Nakano M., Ikemoto K. Recent progress in studies on the health benefits of pyrroloquinoline quinone. Bioscience, Biotechnology, and Biochemistry, 2016, 80, P. 13–22.

30. Ikemoto K., Mohamad Ishak N.S., Akagawa M. The effects of pyrroloquinoline quinone disodium salt on brain function and physiological processes. J. Med. Invest., 2024, 71, P. 23–28.

31. Mohamad Ishak N.S., Ikemoto K. Pyrroloquinoline-quinone to reduce fat accumulation and ameliorate obesity progression. Front. Mol. Biosci., 2023, 10, 1200025.

32. Banerjee R., Purhonen J., Kallijarvi J. The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology. ¨ The FEBS Journal, 2022, 289, P. 6936–6958.

33. Jonscher K.R., Chowanadisai W., Rucker R.B. Pyrroloquinoline-quinone is more than an antioxidant: A vitamin-like accessory factor important in health and disease prevention. Biomolecules, 2021, 11, 1441.

34. Popov A.L., Popova N.R., Selezneva I.I., Akkizov A.Y., Ivanov V.K. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. Materials Science and Engineering: C, 2016, 68, P. 406–413.

35. Parimi D., Sundararajan V., Sadak O., Gunasekaran S., Mohideen S.S., Sundaramurthy A. Synthesis of positively and negatively charged CeO2 nanoparticles: Investigation of the role of surface charge on growth and development of Drosophila melanogaster. ACS Omega, 2019, 4, P. 104–113.

36. Itoh S., Kawakami H., Fukuzumi S. Development of the active site model for calcium-containing quinoprotein alcohol dehydrogenases. J. of Molecular Catalysis B: Enzymatic, 2000, 8, P. 85–94.

37. Tsai Y.-Y., Oca-Cossio J., Agering K., Simpson N.E., Atkinson M.A., Wasserfall C.H., Constantinidis I., Sigmund W. Novel synthesis of cerium oxide nanoparticles for free radical scavenging. Nanomedicine, 2007, 2, P. 325–332.

38. Wang L., Roitberg A., Meuse C., Gaigalas A.K. Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, P. 1781–1791.

39. Smith B.C. Infrared spectroscopy of polymers XII: Polyaramids and slip agents. Spectroscopy, 2023, 38 (5), P. 16–18.

40. Ibrahim S., Rezk M.Y., Ismail M., Abdelrahman T., Sharkawy M., Abdellatif A., Allam N.K. Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications. Nanoscale Adv., 2020, 2, P. 3341–3349.

41. Danaf N.A., Kretzschmar J., Jahn B., Singer H., Pol A., Op Den Camp H.J.M., Steudtner R., Lamb D.C., Drobot B., Daumann L.J. Studies of pyrroloquinoline quinone species in solution and in lanthanide-dependent methanol dehydrogenases. Phys. Chem. Chem. Phys., 2022, 24, P. 15397–15405.

42. Ray R.S., Agrawal N., Sharma A., Hans R.K. Use of L-929 cell line for phototoxicity assessment. Toxicology in Vitro, 2008, 22, P. 1775–1781.

43. Tumkur P.P., Gunasekaran N.K., Lamani B.R., Nazario Bayon N., Prabhakaran K., Hall J.C., Ramesh G.T. Cerium oxide nanoparticles: synthesis and characterization for biosafe applications. Nanomanufacturing, 2021, 1, P. 176–189.

44. Goffart S., Tikkanen P., Michell C., Wilson T., Pohjoismaki J.L.O. The type and source of reactive oxygen species influences the outcome of ¨ oxidative stress in cultured cells. Cells, 2021, 10, 1075.

45. Ransy C., Vaz C., Lombes A., Bouillaud F. Use of H ` 2O2 to cause oxidative stress, the catalase issue. IJMS, 2020, 21, 9149.

46. He K., Nukada H., Urakami T., Murphy M.P. Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): implications for its function in biological systems. Biochemical Pharmacology, 2003, 65, P. 67–74.


Review

For citations:


Zamyatina E.A., Goryacheva O.A., Popova N.R. Physicochemical properties and biological activity of novel cerium oxide nanoparticles modified with pyrroloquinoline quinone. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):683-692. https://doi.org/10.17586/2220-8054-2024-15-5-683-692

Views: 33


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)