Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Физико-химические характеристики и биологическая активность новых наночастиц оксида церия, модифицированных пирролохинолинхиноном

https://doi.org/10.17586/2220-8054-2024-15-5-683-692

Аннотация

Наноразмерный оксид церия (CeO2) является биодоступным неорганическим нанозимом, проявляющим выраженную окислительно-восстановительную активность и способным выступать в роли системы доставки биоактивных соединений. Нами были синтезированы и охарактеризованы новые наночастицы (NPs) CeO2, модифицированные пирролохинолинхиноном (PQQ). Показано, что CeO2@PQQ NPs имеют размер до 4 нм (ТЭМ), гидродинамический диаметр составил 62 нм (DLS), дзета-потенциал -38 мВ, PQQ адсорбируется на поверхности CeO2 NPs (FTIR). Установлено, что в диапазоне концентраций 0,1-10 мкМ CeO2@PQQ NPs не оказывают цитотоксического эффекта на культуру клеток фибробластов мыши (L929), а также не оказывают негативного влияния на митохондриальную функцию L929. Было выявлено, что при индукции окислительного стресса (200 мкМ H2O2) CeO2@PQQ NPs проявляют защитное действие в отношении L929 в концентрациях 0,1-10 мкМ, приводя к сохранению уровня митохондриального потенциала клеток до 76% от контроля и жизнеспособности клеток до 78% до и после добавления наночастиц. Результаты работы позволяют рассматривать CeO2@PQQ NPs в качестве новой гибридной наносистемы для митохондриально-направленной борьбы с окислительным стрессом.

Об авторах

Е. А. Замятина
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Россия


О. А. Горячева
Saratov State University named after N. G. Chernyshevsky, Chemistry Institute
Россия


Н. Р. Попова
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Россия


Список литературы

1. Yang S., Lian G. ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem, 2020, 467, P. 1–12.

2. Ott M., Gogvadze V., Orrenius S., Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis, 2007, 12, P. 913–922.

3. Jomova K., Raptova R., Alomar S.Y., Alwasel S.H., Nepovimova E., Kuca K., Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol, 2023, 97, P. 2499–2574.

4. Kowalczyk P., Sulejczak D., Kleczkowska P., Bukowska-Osko I., Kucia M., Popiel M., Wietrak E., Kramkowski K., Wrzosek K., Kaczy ´ nska K. ´ Mitochondrial oxidative stress—A causative factor and therapeutic target in many diseases. IJMS, 2021, 22, 13384.

5. Liu Y., Fiskum G., Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. of Neurochemistry, 2002, 80, P. 780–787.

6. Lennicke C., Cocheme H.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. ´ Molecular Cell, 2021, 81, P. 3691–3707.

7. Newmeyer D.D., Ferguson-Miller S. Mitochondria. Cell, 2003, 112, P. 481–490.

8. Mailloux R.J. An Update on Mitochondrial Reactive Oxygen Species Production. Antioxidants, 2020, 9, 472.

9. Filograna R., Mennuni M., Alsina D., Larsson N. Mitochondrial DNA copy number in human disease: the more the better? FEBS Letters, 2021, 595, P. 976–1002.

10. Wei W., Chinnery P.F. Inheritance of mitochondrial DNA in humans: implications for rare and common diseases. J. Intern. Med., 2020, 287, P. 634–644.

11. Pereira C.V., Gitschlag B.L., Patel M.R. Cellular mechanisms of mtDNA heteroplasmy dynamics. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, P. 510–525.

12. Mustafa M.F., Fakurazi S., Abdullah M.A., Maniam S. Pathogenic Mitochondria DNA Mutations: Current Detection Tools and Interventions. Genes, 2020, 11, 192.

13. Pisoschi A.M., Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. European J. of Medicinal Chemistry, 2015, 97, P. 55–74.

14. Elsayed Azab A., Adwas A.A., Ibrahim Elsayed A.S., Adwas A.A., Ibrahim Elsayed A.S., Quwaydir F.A. Oxidative stress and antioxidant mechanisms in human body. JABB, 2019, 6, P. 43–47.

15. Nandi A., Yan L.-J., Jana C.K., Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 2019, P. 1–19.

16. Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. of Medicine, 2018, 54, P. 287–293.

17. Li C.-W., Li L.-L., Chen S., Zhang J.-X., Lu W.-L. Antioxidant nanotherapies for the treatment of inflammatory diseases. Front. Bioeng. Biotechnol., 2020, 8, 200.

18. Kim Y.G., Lee Y., Lee N., Soh M., Kim D., Hyeon T. Ceria-based therapeutic antioxidants for biomedical applications. Advanced Materials, 2024, 36, 2210819.

19. Khalil I., Yehye W.A., Etxeberria A.E., Alhadi A.A., Dezfooli S.M., Julkapli N.B.M., Basirun W.J., Seyfoddin A. Nanoantioxidants: Recent trends in antioxidant delivery applications. Antioxidants, 2019, 9, 24.

20. Celardo I., Pedersen J.Z., Traversa E., Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011, 3, 1411.

21. Popov A.L., Andreeva V.V., Khohlov N.V., Kamenskikh K.A., Gavrilyuk V.B., Ivanov V.K. Comprehensive cytotoxicity analysis of polysaccharide hydrogel modified with cerium oxide nanoparticles for wound healing application. Nanosystems: Phys. Chem. Math., 2021, 12, P. 329–335.

22. Li F., Yang L., Zou L., Wu Y., Hu C., He J., Yang X. Decreasing crystallinity is beneficial to the superoxide dismutase-like activity of ceria nanoparticles. ChemNanoMat, 2022, 8, e202100466.

23. Shcherbakov A.B., Reukov V.V., Yakimansky A.V., Krasnopeeva E.L., Ivanova O.S., Popov A.L., Ivanov V.K. CeO2 Nanoparticle-containing polymers for biomedical applications: A Review. Polymers, 2021, 13, 924.

24. Filippova A.D., Baranchikov A.E., Ivanov V.K. Enzyme-like activity of cerium dioxide colloidal solutions stabilized with L-Malic acid. Colloid J., 2023, 85, P. 782–794.

25. Ge X., Cao Z., Chu L. The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants, 2022, 11, 791.

26. Corsi F., Deidda Tarquini G., Urbani M., Bejarano I., Traversa E., Ghibelli L. The impressive anti-inflammatory activity of cerium oxide nanoparticles: more than redox? Nanomaterials, 2023, 13, 2803.

27. Sozarukova M.M., Kozlova T.O., Beshkareva T.S., Popov A.L., Kolmanovich D.D., Vinnik D.A., Ivanova O.S., Lukashin A.V., Baranchikov A.E., Ivanov V.K. Gadolinium Doping Modulates the Enzyme-like Activity and Radical-Scavenging Properties of CeO2 Nanoparticles. Nanomaterials, 2024, 14, 769.

28. Chukavin N.N., Filippova K.O., Ermakov A.M., Karmanova E.E., Popova N.R., Anikina V.A., Ivanova O.S., Ivanov V.K., Popov A.L. Redox-active cerium fluoride nanoparticles selectively modulate cellular response against X-ray irradiation In Vitro. Biomedicines, 2023, 12, 11.

29. Akagawa M., Nakano M., Ikemoto K. Recent progress in studies on the health benefits of pyrroloquinoline quinone. Bioscience, Biotechnology, and Biochemistry, 2016, 80, P. 13–22.

30. Ikemoto K., Mohamad Ishak N.S., Akagawa M. The effects of pyrroloquinoline quinone disodium salt on brain function and physiological processes. J. Med. Invest., 2024, 71, P. 23–28.

31. Mohamad Ishak N.S., Ikemoto K. Pyrroloquinoline-quinone to reduce fat accumulation and ameliorate obesity progression. Front. Mol. Biosci., 2023, 10, 1200025.

32. Banerjee R., Purhonen J., Kallijarvi J. The mitochondrial coenzyme Q junction and complex III: biochemistry and pathophysiology. ¨ The FEBS Journal, 2022, 289, P. 6936–6958.

33. Jonscher K.R., Chowanadisai W., Rucker R.B. Pyrroloquinoline-quinone is more than an antioxidant: A vitamin-like accessory factor important in health and disease prevention. Biomolecules, 2021, 11, 1441.

34. Popov A.L., Popova N.R., Selezneva I.I., Akkizov A.Y., Ivanov V.K. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. Materials Science and Engineering: C, 2016, 68, P. 406–413.

35. Parimi D., Sundararajan V., Sadak O., Gunasekaran S., Mohideen S.S., Sundaramurthy A. Synthesis of positively and negatively charged CeO2 nanoparticles: Investigation of the role of surface charge on growth and development of Drosophila melanogaster. ACS Omega, 2019, 4, P. 104–113.

36. Itoh S., Kawakami H., Fukuzumi S. Development of the active site model for calcium-containing quinoprotein alcohol dehydrogenases. J. of Molecular Catalysis B: Enzymatic, 2000, 8, P. 85–94.

37. Tsai Y.-Y., Oca-Cossio J., Agering K., Simpson N.E., Atkinson M.A., Wasserfall C.H., Constantinidis I., Sigmund W. Novel synthesis of cerium oxide nanoparticles for free radical scavenging. Nanomedicine, 2007, 2, P. 325–332.

38. Wang L., Roitberg A., Meuse C., Gaigalas A.K. Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, P. 1781–1791.

39. Smith B.C. Infrared spectroscopy of polymers XII: Polyaramids and slip agents. Spectroscopy, 2023, 38 (5), P. 16–18.

40. Ibrahim S., Rezk M.Y., Ismail M., Abdelrahman T., Sharkawy M., Abdellatif A., Allam N.K. Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications. Nanoscale Adv., 2020, 2, P. 3341–3349.

41. Danaf N.A., Kretzschmar J., Jahn B., Singer H., Pol A., Op Den Camp H.J.M., Steudtner R., Lamb D.C., Drobot B., Daumann L.J. Studies of pyrroloquinoline quinone species in solution and in lanthanide-dependent methanol dehydrogenases. Phys. Chem. Chem. Phys., 2022, 24, P. 15397–15405.

42. Ray R.S., Agrawal N., Sharma A., Hans R.K. Use of L-929 cell line for phototoxicity assessment. Toxicology in Vitro, 2008, 22, P. 1775–1781.

43. Tumkur P.P., Gunasekaran N.K., Lamani B.R., Nazario Bayon N., Prabhakaran K., Hall J.C., Ramesh G.T. Cerium oxide nanoparticles: synthesis and characterization for biosafe applications. Nanomanufacturing, 2021, 1, P. 176–189.

44. Goffart S., Tikkanen P., Michell C., Wilson T., Pohjoismaki J.L.O. The type and source of reactive oxygen species influences the outcome of ¨ oxidative stress in cultured cells. Cells, 2021, 10, 1075.

45. Ransy C., Vaz C., Lombes A., Bouillaud F. Use of H ` 2O2 to cause oxidative stress, the catalase issue. IJMS, 2020, 21, 9149.

46. He K., Nukada H., Urakami T., Murphy M.P. Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): implications for its function in biological systems. Biochemical Pharmacology, 2003, 65, P. 67–74.


Рецензия

Для цитирования:


Замятина Е.А., Горячева О.А., Попова Н.Р. Физико-химические характеристики и биологическая активность новых наночастиц оксида церия, модифицированных пирролохинолинхиноном. Наносистемы: физика, химия, математика. 2024;15(5):683-692. https://doi.org/10.17586/2220-8054-2024-15-5-683-692

For citation:


Zamyatina E.A., Goryacheva O.A., Popova N.R. Physicochemical properties and biological activity of novel cerium oxide nanoparticles modified with pyrroloquinoline quinone. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):683-692. https://doi.org/10.17586/2220-8054-2024-15-5-683-692

Просмотров: 35


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)