Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Symmetry-based prediction of the type-II multiferroics with pyrochlore structure

https://doi.org/10.17586/2220-8054-2023-14-2-208-215

Abstract

Based on the symmetry related concept of the group theory we predict two structures with enan tiomorphic space groups PI43 and PI41. These phases arise as a result of spin ordering on 16d Wyckoff position in crystals with space group Fd3m. It is shown that PI43 and PI41 hypothetical magnetic structures are multiferroics of type II. The ferroelectric polarization emerges through a mechanism of the hybrid improper ferroelectricity allowing trilinear coupling of polarization and two other antiferromagnetic order parameters. In addition to improper ferroelectricity, the symmetry analysis proves the possible coexistence of other improper ferroic orders including orbital, ferroelastic, ferroelastoelectric, ferrobielastic, optical, ferroaxial, ferrotoroidic, gyrotropic and other crystal freedom degrees.

About the Authors

V. M. Talanov
Platov South-Russian State Polytechnic University
Russian Federation

Valeriy M. Talanov

Novocherkassk, Rostov region, 346428



M. V. Talanov
Platov South-Russian State Polytechnic University; Southern Federal University
Russian Federation

Mikhail V. Talanov

Novocherkassk, Rostov region, 346428

Rostov-on-Don, 344090



V. B. Shirokov
Platov South-Russian State Polytechnic University; Southern Federal University; Southern Scientific Center of Russian Academy of Sciences
Russian Federation

Vladimir B. Shirokov

Novocherkassk, Rostov region, 346428

Rostov-on-Don, 344090

Rostov-on-Don, 344006



References

1. Vopson M.M. Fundamentals of Multiferroic Materials and Their Possible Applications. Critical Reviews in Solid State and Materials Sciences, 2014, 201, P. 1–28.

2. Khomskii D. Classifying multiferroics: Mechanisms and effects. Physics, 2009, 2(20), P. 1-8.

3. Selbach S.M., Tybell T., et al. The Ferroic Phase Transitions of BiFeO3. Adv. Mater., 2008, 20, P. 3692–3696.

4. Kimura T., Kawamoto S., et al. Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B, 2003, 67, P. 180401(1-4) (R).

5. Seshadri R., Hill N. A. Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater., 2001, 13, P. 2892–2899.

6. Kimura T., Goto T., et al. Magnetic control of ferroelectic polarization. Nature, 2003, 426, P. 55–58.

7. Hur N., Park S., et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 2004, 429, P. 392 395.

8. Cheong S.W., Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nature Mater, 2007, 6, P. 13–20.

9. Hill N. A. Why there are so few multiferroics with the perovskites structure? J. Phys. Chem. B, 2000, 104(29), P. 6694–6709.

10. Polinger V., Garcia-Fernandez P., et al. Pseudo Jahn–Teller origin of ferroelectric instability in BaTiO3 type perovskites: The Green’s function approach and beyond. Physica B: Condensed Matter, 2015, 457, P. 296–309.

11. Smolenskii G. A., Chupis I. E. Ferroelectromagnets. Physics–Uspekhi, 1982, 25, P. 475–493.

12. Nan C.-W. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys., 2008, 103, P. 031101(1 35).

13. Bousquet E., Dawber M., et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature, 2008, 452, P. 732–736.

14. Sim H., Cheong S.W., et al. Octahedral tilting-induced ferroelectricity in ASnO3/A‘SnO3 superlattices (A, A‘=Ca, Sr, and Ba). Phys. Rev. B, 2013, 88, P. 014101(1-7).

15. Zhao H.J., ´ I˜ niguez J., et al. Atomistic theory of hybrid improper ferroelectricity in perovskites. Phys. Rev. B, 2014, 89, P. 174101(1-7).

16. Benedek N. A., Fennie C.J. Hybrid Improper Ferroelectricity: A Mechanism for Controllable Polarization-Magnetization Coupling. Phys. Rev. Lett., 2011, 106, P. 107204(1-4).

17. Rondinelli J.M., Fennie C.J. Octahedral Rotation-Induced Ferroelectricity in Cation Ordered Perovskites. Adv. Mater., 2012, 24, P. 1961–1968.

18. MulderA.T., BenedekN.A., et al. Turning ABO3 Antiferroelectrics into Ferroelectrics: Design Rules for Practical Rotation-Driven Ferroelectricity in Double Perovskites and A3B2O7 Ruddlesden-Popper Compounds. Adv. Func. Mater., 2013, 23, P. 4810–4820.

19. Benedek N.A., Rondinelli J.M., et al. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans., 2015, 44, P. 10543–10558.

20. Santos S.S.M., Marcondes M.L., et al. Spontaneous electric polarization and electric field gradient in hybrid improper ferroelectrics: insights and correlations. J. Mater. Chem. C, 2021, 22, P. 15074–15082.

21. Oh Y.S., Luo X., et al. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals. Nature Mater., 2015, 14, P. 407–413.

22. Liu X.Q., Wu J.W., et al Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption. Appl. Phys. Lett., 2015, 106, P. 202903(1-5).

23. Yoshida S., Akamatsu H., et al. Hybrid Improper Ferroelectricity in (Sr,Ca)3Sn2O7 and Beyond: Universal Relationship between Ferroelectric Transition Temperature and Tolerance Factor in n = 2 Ruddlesden–Popper Phases. J. Am. Chem. Soc., 2018, 140, P. 15690–15700.

24. Yoshida S., Fujita K., et al. Ferroelectric Sr3Zr2O7: Competition between Hybrid Improper Ferroelectric and Antiferroelectric Mechanisms. Adv. Funct. Mater., 2018, 30, P. 1801856(1-12).

25. Hu Z.Z., Lu J.J., et al First-order phase transition and unexpected rigid rotation mode in hybrid improper ferroelectric (La, Al) co-substituted Ca3Ti2O7 ceramics. J. Materiomics, 2019, 5, P. 618–625.

26. Lee M.H., Chang C.-P., et al. Hidden Antipolar Order Parameter and Entangled N´ eel-Type Charged Domain Walls in Hybrid Improper Ferro electrics. Phys. Rev. Lett., 2017, 119, P. 157601(1-6).

27. Smith K.A., Nowadnick E.A., et al. Infrared nano-spectroscopy of ferroelastic domain walls in hybrid improper ferroelectric Ca3Ti2O7. Nature Commun., 2019, 10, P. 5235(1-9).

28. Bostr¨ om H.L.B., Senn M.S., Goodwin A.L. Recipes for improper ferroelectricity in molecular perovskites. Nature Commun., 2018, 9, P. 2380(1-7).

29. Bostr¨ om H.L.B., Goodwin A.L. Hybrid Perovskites, Metal–Organic Frameworks, and Beyond: Unconventional Degrees of Freedom in Molecular Frameworks. Acc.Chem.Res., 2021, 54, P. 1288–1297.

30. Stroppa A., Barone P., et al. Hybrid Improper Ferroelectricity in a Multiferroic and Magnetoelectric Metal-Organic Framework. Adv. Mater., 2013, 25, P. 2284–2290.

31. Tokura Y., Seki S. Multiferroics with Spiral Spin Orders. Advanced Materials, 2010, 22(14), P. 1554–1565.

32. Talanov M.V., Shirokov V.B., Pimenov M.S., Talanov V.M. Magnetic phase diagrams of the pyrochlore-based magnets: Landau theory. J. Magn. Magn. Mat, 2023 (in press).

33. Choi Y.J., Yi H.T., et al. Ferroelectricity in an Ising Chain Magnet. Phys. Rev. Lett., 2008, 100, P. 047601(1-4).

34. Arima T. Ferroelectricity induced by proper-screw type magnetic order, J. Phys. Soc. Jpn., 2007, 76, P. 073702(1-4).

35. Talanov M.V., Talanov V.M. Structural Diversity of Ordered Pyrochlores. Chem Mater., 2021, 33, P. 2706–2725.

36. Talanov M.V., Talanov V.M. Formation of Breathing Pyrochlore Lattices: Structural, Thermodynamic and Crystal Chemical Aspects. CrystEng Comm., 2020, 22, P. 1176–1187.

37. Campbell B.J., Stokes H.T., et al., ISODISPLACE: a web-based tool for exploring structural distortions. J. Appl. Cryst., 2006, 39, P. 607–614.

38. Perez-Mato J., Gallego S., et al. Symmetry-Based Computational Tools for Magnetic Crystallography. Annu. Rev. Mater. Res., 2015, 45, P. 217 248.

39. MommaK., Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst, 2008, 41, P. 653–658.

40. Belov N.V., Neronova N.N., Smirnova T.S. Tr. Inst. Krist. Akad. SSSR., 1955, 11, P. 33–67, English translation in Sov. Phys. Crystallogr., 1957, 1, P. 487–488.

41. Campbell B.J., Stokes H.T., et al. Introducing a unified magnetic space-group symbol, Acta Cryst. A, 2022, 78, P. 99–106.

42. Talanov M.V., Talanov V.M. Order parameters and phase diagrams of ferroelastics with pyrochlore structure, Ferroelectrics, 2019, 543, P. 1–11.

43. Talanov M.V., Shirokov V.B., et al., Vanadium clusters formation in geometrically frustrated spinel oxide AlV2O4, Acta Crystallogr. B, 2018, 74, P. 337–353.

44. Sirotin Y.I. Shaskol’skaya M.P. Foundations of Crystal Physics. Nauka, Moscow, 1979.

45. Tagantsev A.K., Cross L.E., Fousek J. Domains in Ferroic Crystals and Thin Films. Springer Science+Business Media, LLC, 2010, 821 p.

46. Hlinka J., Privratska J., et al. Symmetry Guide to Ferroaxial Transitions. Phys. Rev. Lett., 2016, 116, P. 177602(1-6).

47. Koˇn´ak ˇ C., Kopsk´y V., Smutn´y F. Gyrotropic phase transitions. J. Phys. C: Solid State Phys., 1978, 11, P. 2493–2518.

48. Talanov M.V. Group-theoretical analysis of 1:3 A-site-ordered perovskite formation. Acta Cryst. A, 2019, 75, P. 379–397.

49. G¨ohler B., Hamelbeck V., et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science, 2011, 331, P. 894–897.

50. O. Ben Dor S. Yochelis, et al. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nat. Commun., 2017, 8, P. 14567(1-7).

51. Naaman R., Paltiel Y., et al. Chiral Induced Spin Selectivity Gives a New Twist on Spin-Control in Chemistry. Acc. Chem. Res., 2020, 53, P. 2659 2667.

52. Suda M., Thathong Y., et al. Light-driven molecular switch for reconfigurable spin filters. Nat. Commun., 2019, 10, P. 2455(1-7).

53. Cheong S.-W., Talbayev, et al. Broken Symmetries. Non-reciprocity, and Multiferroicity. npj Quantum Mater., 2018, 3, P. 19.

54. Jin, W., Drueke, E., et al. Observation of a Ferro-Rotational Order Coupled with Second-Order Nonlinear Optical Fields. Nat. Phys., 2020, 16, P. 42–46.

55. Hayashida T., Uemura, et al. Visualization of Ferroaxial Domains in an Order-Disorder Type Ferroaxial Crystal. Nat. Commun., 2020, 11, P. 4582.

56. Cheong S.-W., Lim S., et al. Permutable SOS (Symmetry Operational Similarity). npj Quantum Mater, 2021, 6, P. 58.

57. Hayami S., Oiwa R., Kusunose H. Electric Ferro-axial Moment as Nanometric Rotator as Source of Longitudinal Spin Current. J. Phys. Soc. Jpn., 2022, 91, P. 113702.

58. Hayashida T., Uemura Y., et al. Phase Transition and Domain Formation in Ferroaxial Crystals. Phys. Rev. Mater., 2021, 5, P. 124409.

59. Yokota H., Hayashida T., et al. Three dimensional Imaging of Ferroaxial Domains Using Circularly Polarized Second Harmonic Generation Microscopy. npj Quantum Mater., 2022, 7, P. 106.

60. Wa´ skowska A. Gerward L., et al. Temperature-and pressure-dependent lattice behaviour of RbFe(MoO4)2. J. Phys. Condens. Matter., 2010, 22, P. 055406.

61. Boysen H., Frey F., et al. Neutron Powder Investigation of the High-temperature Phase Transition in NiTiO3. Z. Kristallogr.– Cryst. Mater., 1995, 210, P. 328–337.


Review

For citations:


Talanov V.M., Talanov M.V., Shirokov V.B. Symmetry-based prediction of the type-II multiferroics with pyrochlore structure. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):208-215. https://doi.org/10.17586/2220-8054-2023-14-2-208-215

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)