Ceramic materials prepared from nanocrystalline InFeZnO4 powder: optical and mechanical properties, and evaluation of radiation tolerance
https://doi.org/10.17586/2220-8054-2024-15-5-693-701
Abstract
A method for low-temperature synthesis of InFeZnO4 oxide from an X-ray amorphous precursor formed as a result of the thermal decomposition of dehydration product of a mixture of polyvinyl alcohol and iron, indium, and zinc nitrate solutions has been developed. Using TG/DSC and XRD, the InFeZnO4 phase has been shown to be formed in the temperature range of 370–420◦C. Using the XRD method, after the heat treatment of the precursor at 800◦C for 4 hours, nanocrystalline InFeZnO4 with an average particle size (CSR) of ≈36 nm has been found to be formed. According to SEM, they do not have a clear facet and form a homogeneous cellular microstructure of the powder. The absence of organic residues and moisture in it has been confirmed by FTIR spectroscopy. From the DRS data, it has been found that the band gap energy Eg of InFeZnO4 for the cases of indirect and direct transitions is 1.54 eV and 2.25 eV, respectively. Ceramics produced from nanocrystalline InFeZnO4 by high-temperature sintering have a density equal to 5160 kg/m3 (≈86 % of the theoretical one). Their microhardness, measured by the Vickers method, is 2.12 GPa. The radiation resistance of InFeZnO4 has been predicted, from which it follows that, when exposed to intermediate and high doses of ionizing radiation, its partial amorphization is the most likely.
Keywords
About the Authors
Olga N. Kondrat’evaRussian Federation
Olga N. Kondrat’eva
Leninskii prosp., 31, Moscow, 119991
Maria N. Smirnova
Russian Federation
Maria N. Smirnova
Leninskii prosp., 31, Moscow, 119991
Galina E. Nikiforova
Russian Federation
Galina E. Nikiforova
Leninskii prosp., 31, Moscow, 119991
Alexey D. Yapryntsev
Russian Federation
Alexey D. Yapryntsev
Leninskii prosp., 31, Moscow, 119991
Dmitriy F. Kondakov
Russian Federation
Dmitriy F. Kondakov
Leninskii prosp., 31, Moscow, 119991
Leonid D. Yagudin
Russian Federation
Leonid D. Yagudin
Leninskii prosp., 31.4, Moscow, 119071
References
1. Kimizuka N., Takayama-Muromachi E., Siratori K. The systems R2O3–M2O3–M′O: R is In, Sc, Y or one of the lanthanides, M is Fe, Ga, or Al, and M′ is one of the divalent cation elements. Handbook on the Physics and Chemistry of Rare Earths, 1990, 13, P. 283–384.
2. Grajczyk R., Subramanian M.A. Structure–property relationships of YbFe2O4– and Yb2Fe3O7–type layered oxides: A bird’s eye view. Progress in Solid State Chemistry, 2015, 43(1–2), P. 37–46.
3. Preaud S., Byl C., Brisset F., Berardan D. SPS-assisted synthesis of InGaO ´ 3(ZnO)m ceramics, and influence of m on the band gap and the thermal conductivity. Journal of the American Ceramic Society, 2020, 103(5), P. 3030–3038.
4. Zhang C., Pei Y., Zhao L.-D., Berardan D., Dragoe N., Gong S., Guo H., The phase stability and thermophysical properties of InFeO3(ZnO)m (m = 2, 3, 4, 5). Journal of the European Ceramic Society, 2014, 34(1), P. 63–68.
5. Katayose S., Miyazaki T., Hayashi Y., Takizawa H. Synthesis of natural superlattice structure in the binary ZnO–Fe2O3 system by microwave irradiation, Journal of the Ceramic Society of Japan, 2010, 118(1377), P. 387–389.
6. Kimizuka N., Yamazaki S. Physics and Technology of Crystalline Oxide Semiconductor CAAC–IGZO: Fundamentals (Wiley Series in Display Technology). John Wiley & Sons, Ltd., 2016, 352 p.
7. Costa J.C., Pouryazdan A., Panidi J., Spina F., Anthopoulos T.D., Liedke M.O., Schneider C., Wagner A., Munzenrieder N. Flexible IGZO TFTs ¨ and their suitability for space applications. IEEE Journal of the Electron Devices Society, 2019, 7, P. 1182–1190.
8. InGaZnO (IGZO) System For Gas Detection at Room Temperature. United States Patent US 20220365022 A1. United States Patent and Trademark Office. Vijjapu M.T., 11 p.
9. Kimizuka N., Isobe M., Nakamura M., Mohri T. Syntheses and crystallographic data of the homologous compounds InFeO3(ZnO)m (m = 1, 2, 3, 7, 11, 13, 15, and 19) and Fe2O3(ZnO)m (m = 8 and 9) in the In2O3–ZnFe2O4–ZnO system. Journal of Solid State Chemistry, 1993, 103(2), P. 394–402.
10. Qu W.-W., Zhang X.-X., Yuan B.-F., Zhao L.-D. Homologous layered InFeO3(ZnO)m: new promising abradable seal coating materials. Rare Metals, 2018, 37, P. 79–94.
11. Wu J., Wei X., Padture N.P., Klemens P.G., Gell M., Garcia E., Miranzo P., Osendi M.I. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. Journal of the American Ceramic Society, 2002, 85(12), P. 3031–3035.
12. Zhao L.-D., Pei Y.-L., Liu Y., Berardan D., Dragoe N. InFeZnO4 as promising thermal barrier coatings. Journal of the American Ceramic Society, 2011, 94(6), P. 16641666.
13. Pan W., Phillpot S.R., Wan C., Chernatynskiy A., Qu Z. Low thermal conductivity oxides. MRS Bulletin, 2012, 37, P. 917–922.
14. Guo H., Zhang C., Pei Y., Guo L., Gong S. Improved thermal barrier properties of InFeZnO4 ceramics by Gd/Yb doping. Journal of Alloys and Compounds, 2014, 585, P. 404–406.
15. Zhang L., Pei Y., Guo H., Gong S. Thermal transport properties of InFeZnO4–YbFeZnO4 solid solutions. Journal of Alloys and Compounds, 2015, 623, P. 203–208.
16. Zhao B., Pei Y., Zhang L., Gong S., Zhao L.-D. Thermal and mechanical properties of Yb&Mg co-doped InFeZnO4. Journal of Alloys and Compounds, 2016, 684, P. 34–39.
17. Zinkle S.J. Hardness and depth-dependent microstructure of ion-irradiated magnesium aluminate spinel. Journal of the American Ceramic Society, 1989, 72(8), P. 1343–1351.
18. Fukushima Y., Yano T., Maruyama T. Swelling, thermal diffusivity and microstructural investigation of neutron irradiated single crystals of nonstoichiometric spinel. Journal of Nuclear Materials, 1990, 175(3), P. 203–208.
19. Kimizuka N., Mohri T., Matsui Y. Homologous Compounds, InFeO3(ZnO)m (m = 1–9). Journal of Solid State Chemistry, 1988, 74(1), P. 98–109.
20. Narendranath S.B., Kumar Yadav A., Bhattacharyya D., Nath Jha S., Nandini Devi R. Photocatalytic H2 evolution from water-methanol system by anisotropic InFeO3(ZnO)m oxides without cocatalyst in visible light. ACS Applied Materials & Interfaces, 2014, 6(15), P. 12321–12327.
21. Smirnova M.N., Kondrat’eva O.N., Nikiforova G.E., Khoroshilov A.V. A new approach to prepare LuFeMgO4. Russian Journal of Inorganic Chemistry, 2023, 68, P. 507–514.
22. Smirnova M.N., Kondrat’eva O.N., Nikiforova G.E., Yapryntsev A.D., Averin A.A., Khoroshilov A.V. Features of synthesis of InGaMgO4 from nitrate-organic precursors and study of its physical properties. Russian Journal of Inorganic Chemistry, 2024, (in press).
23. Larkin P.J. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Elsevier, 2011, 230 p.
24. Jain D., Sudarsan V., Patra A.K., Sastry P.U., Tyagi A.K. Effect of local ordering around Th4+ ions in glycine-nitrate precursor gel on the powder characteristic of gel-combusted ThO2. Journal of Nuclear Materials, 2019, 527, P. 151826.
25. Warrier A.V.R., Narayanan P.S. Infrared absorption spectra of single crystals of glycine silver nitrate and monoglycine nitrate. Proceedings of the Indian Academy of Sciences – Section A. 1967, 66, P. 46–54.
26. Khrushchev M.M. Trenie, iznos i mikrotverdost’ materialov: Izbrannye raboty (k 120-letiyu so dnya rozhdeniya). KRASAND, Moskva, 2012, 512 p.
27. Lebedeva S.I. Opredelenie mikrotverdosti mineralov. Izdatel’stvo akademii nauk SSSR, Moskva, 1963, 124 p.
28. Andrade P.H.M., Volkringer C., Loiseau T., Tejeda A., Hureau M., Moissette A. Band gap analysis in MOF materials: Distinguishing direct and indirect transitions using UV–vis spectroscopy. Applied Materials Today. 2024, 37, P. 102094.
29. Meng X., Wang Z., Qiu K., Li Y., Liu J., Wang Z., Liu S., Li X., Yang Z., Li P. Design of a novel near-infrared phosphor by controlling cationic coordination environment. Crystal Growth & Design, 2018, 18(8), P. 4691–4700.
30. Naguib H.M., Kelly R. Criteria for bombardment-induced structural changes in non-metallic solids. Radiation Effects, 1975, 25 (1), P. 1–12.
31. Batsanov S.S. The concept of electronegativity. Conclusions and prospects. Russian Chemical Reviews, 1968, 37(5), P. 332–351.
32. Satalkar M., Kane S.N., Kulriya P.K., Avasthi D.K. Swift heavy ion irradiated spinel ferrite: A cheap radiation resistant material. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 379, P. 235-241.
33. Studer F., Houpert Ch., Groult D., Yun Fan J., Meftah A., Toulemonde M. Spontaneous magnetization induced in the spinel ZnFe2O4 by heavy ion irradiation in the electronic stopping power regime. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993, 82(1), P. 91–102.
34. с.
Review
For citations:
Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E., Yapryntsev A.D., Kondakov D.F., Yagudin L.D. Ceramic materials prepared from nanocrystalline InFeZnO4 powder: optical and mechanical properties, and evaluation of radiation tolerance. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):693-701. https://doi.org/10.17586/2220-8054-2024-15-5-693-701