Nucleation and collapse of magnetic topological solitons in external magnetic field
https://doi.org/10.17586/2220-8054-2023-14-2-216-222
Abstract
The dependence of the lifetimes and rates of spontaneous nucleation of topological magnetic soli tons on the external magnetic field is calculated within the framework of the harmonic transition state theory for magnetic degrees of freedom. For two-dimensional magnetic skyrmions, the influence of the magnetic field on the collapse rate was found to be greater than on the nucleation rate. This is explained by the weaker dependence of the energy of the transition state on the external field compared to the energy of the metastable skyrmion. The balance of the nucleation and collapse of skyrmion rates makes it possible to determine the average equilibrium concentration of skyrmions in a thin film as a function of the external field and temperature. It is shown that skyrmion and antiskyrmion states can exist simultaneously in quasi-two-dimensional thin films in tilted external magnetic field. The minimum energy paths for the collapse of these topological solitons and magnetic configurations in the vicinity of saddle point have been found and compared.
About the Authors
M. N. PotkinaRussian Federation
Maria N. Potkina – Faculty of Physics
St. Petersburg, 197101
I. S. Lobanov
Russian Federation
Igor S. Lobanov,– Faculty of Physics
St. Petersburg, 197101
V. M. Uzdin
Russian Federation
Valery M. Uzdin– Faculty of Physics
St. Petersburg, 197101
References
1. Parkin S.S.P., Hayashi M., Thomas L. Magnetic Domain-Wall Racetrack Memory. Science, 2008, 320, 5837, P. 190–194.
2. Wiesendanger R. Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics. Nat. Rev. Mater., 2016, 1, P. 16044.
3. Finocchio G., B¨ uttner F., Tomasello R., Carpentieri M., Kl¨au M. Magnetic skyrmions: from fundamental to applications. J Phys. D: Appl. Phys., 2016, 49, P. 423001.
4. Fert A., Reyren N., Cros V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater., 2017, 2, P. 17031.
5. Bessarab P.F., Uzdin V.M., J´ onsson H. Harmonic transition-state theory of thermal spin transitions. Phys. Rev. B, 2012, 85, P. 184409.
6. Coffey W.T., Garanin D.A., Mccarthy D.J. Crossover formulas in the Kramers theory of thermally activated escape rates—application to spin systems. Adv. Chem. Phys., 2001, 117, P. 483–765.
7. Lobanov I.S., Potkina M.N., Uzdin V.M. Stability and lifetimes of magnetic states of nano- and microstructures (Brief review) JETP Lett., 2021 113, P. 833–847.
8. Bessarab P.F., Uzdin V.M., J´ onsson H. Size and Shape Dependence of Thermal Spin Transitions in Nanoislands. Phys. Rev. Lett., 2013, 110, P. 020604.
9. Suess D., Vogler C., Bruckner F., Heistracher P., Slanovc F., Abert, C. Spin torque efficiency and analytic error rate estimates of skyrmion racetrack memory. Sci. Rep., 2019, 9, P. 4827.
10. Uzdin V.M., Potkina M.N., Lobanov I.S., Bessarab P.F., J´ onsson H. The effect of confinement and defects on the thermal stability of skyrmions. Physica B: Condens. Matter., 2018, 549, 15, P. 6–9.
11. Uzdin V.M., Potkina M.N., Lobanov I.S., Bessarab P.F., J´ onsson H. Energy surface and lifetime of magnetic skyrmions. J. Magn. Magn. Mater., 2018, 459, P. 236–240.
12. Potkina M.N., Lobanov I.S., Uzdin V.M. Nonmagnetic impurities in skyrmion racetrack memory Nanosystems: phys., chem., math., 2020, 11 (6), P. 628–635.
13. Lobanov I.S., Uzdin V.M. Lifetime, collapse, and escape paths for hopfions in bulk magnets with competing exchange interactions. Phys. Rev. B, 2023, 107, P. 104405.
14. Potkina M.N., Lobanov I.S., J´onsson H., Uzdin V.M. Skyrmions in antiferromagnets: Thermal stability and the effect of external field and impuri ties. J. Appl. Phys., 2020, 127, P. 213906.
15. Voronin K.V. Lobanov I.S., Uzdin V.M. Activation Energy and Mechanisms for Skyrmion Collapse in Synthetic Antiferromagnets JETP Lett., 2022 116, P. 242–248.
16. Sampaio J., Cros V., Rohart S., Thiaville A., Fert A., Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanos tructures. Nat. Nanotech., 2013. 8, P. 839
17. Romming N., Hanneken C., Menzel M., Bickel J.E., Wolter B., von Bergmann K., Kubetzka A., Wiesendanger R. Writing and Deleting Single Magnetic Skyrmions. Science, 2013, 341, 6146, P. 636–639.
18. Iwasaki J., Mochizuki M., Nagaosa N. Current-induced skyrmion dynamics in constricted geometries. Nat. nanotech., 2013, 8, P. 742–747.
19. Desplat, L., Meyer, S., Bouaziz, J., Buhl, P.M., Lounis, S., Dup´e, B. and Hervieux, P.A. Mechanism for ultrafast electric-field driven skyrmion nucleation. Phys. Rev. B, 2021, 104, P. L060409.
20. Zhang X., Zhou Y., Song K.M., Park T.E., Xia J., Ezawa M., Liu X., Zhao W., Zhao G., Woo S. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. J. Phys.: Cond. Mat., 2020, 14, P. 143001.
21. Belavin A.A. , Polyakov A.M. Metastable states of two-dimensional isotropic ferromagnets. JETP Lett., 1975 22, P. 503–506. [JETP Lett. 22, 245 (1975)].
22. Potkina, M.N., Lobanov, I.S., J´ onsson, H., Uzdin, V.M. Lifetime of skyrmions in discrete systems with infinitesimal lattice constant. J. Magn. Magn. Mater., 2022, 549, P. 168974.
23. von Malottki S., Bessarab P.F., Haldar S., Delin A. and Heinze S. Skyrmion lifetime in ultrathin films. Phys. Rev. B, 2019, 99, P. 060409.
24. Capic D., Garanin D.A., Chudnovsky E.M., Skyrmions in an oblique field. J. Magn. Magn. Mater., 2021, 537, P. 168215.
25. Peng L., Takagi R., Koshibae W., Shibata K., Nakajima K., Arima T.H., Nagaosa N., Seki S., Yu X. Tokura, Y., Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet. Nat. nanotech., 2020, 15, P. 181–186.
26. Jena J., G¨obel B., Ma T., Kumar V., Saha R., Mertig I., Felser C., Parkin, S.S.P. Elliptical Bloch skyrmion chiral twins in an antiskyrmion system. Nat. Commun., 2020, 11, P. 1115.
27. Hagemeister J., Romming N., von Bergmann K., Vedmedenko E.Y., Wiesendanger R. Stability of single skyrmionic bits. Nat. Commun., 2015, 6, P. 8455.
28. Nayak A.K., Kumar V., Ma T., Werner P., Pippel E., Sahoo R., Damay F., R¨ oßler U.K., Felser C., Parkin, S.S.P. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature, 2017, 548(7669), P. 561–566.
29. Potkina M.N., Lobanov I.S., Tretiakov O.A., J´ onsson H., Uzdin, V.M. Stability of long-lived antiskyrmions in the Mn-Pt-Sn tetragonal Heusler material. Phys. Rev. B, 2020, 102, P. 134430.
30. Bessarab P. F., Uzdin V. M., J´onsson H. Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation. Comp. Phys. Commun., 2015, 196, P. 335.
31. Lobanov, I. S., Uzdin, V. M. The lifetime of micron scale topological chiral magnetic states with atomic resolution. Comp. Phys. Commun., 2021, 269, P. 108136.
32. R´ ozsa L., Simon E., Palot´ as K., Udvardi L., Szunyogh L. Complex magnetic phase diagram and skyrmion lifetime in an ultrathin film from atomistic simulations. Phys. Rev. B, 2016, 93, P. 024417.
33. Wang C., Du H., Zhao X., Jin C., Tian M., Zhang Y., Che R. Enhanced stability of the magnetic skyrmion lattice phase under a tilted magnetic f ield in a two-dimensional chiral magnet. Nano lett., 2017 17, P. 2921.
Review
For citations:
Potkina M.N., Lobanov I.S., Uzdin V.M. Nucleation and collapse of magnetic topological solitons in external magnetic field. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):216-222. https://doi.org/10.17586/2220-8054-2023-14-2-216-222