Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Study of the electrical and electronic properties of crystalline molybdenum disulfide (MoS2-3R) semiconductor nano using alternating current (AC) measurements

https://doi.org/10.17586/2220-8054-2023-14-6-633-643

Abstract

MoS2 nanostructures were prepared using the hydrothermal method by reacting ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O244H2O) with citric acid monohydrate (C6H8O7H2O) in distilled water with the presence of sodium sulfide (Na2S). The surface structure studies of MoS2 showed that the size of the surface clusters of the studied tablet is of the order of 50 – 100 nm. Using measurements (Zetasizer Nano Series), we found that the particle sizes ranged from 150 – 350 nm. Alternating current (LCR) measurements were made for (tablet-MoS2) under a constant temperature T = 10 0C. Measurements of the parallel electrical capacitance (Cp) in terms of frequency (F) of tablet-Mo2S showed a sharp drop in the value of the electrical capacitance (Cp) with an increase in frequency within the range 20 Hz – 16 kHz. It is shown that the series capacitance increased with the increase of the applied potential.

About the Authors

H. Alhussein
University of Aleppo
Syrian Arab Republic

Hussein Alhussein



J. Q AlSharr
University of Aleppo
Syrian Arab Republic

Jamal Qasim AlSharr



S. Othman
University of Aleppo
Syrian Arab Republic

Sawsan Othman



H. AlKhamisy
University of Aleppo
Syrian Arab Republic

Hassan AlKhamisy



References

1. Kuc B., Heine T. On the Stability and Electronic Structure of Transition Metal Dichalcogenide Monolayer Alloys Mo1-x Xx-S2-y Sey with X = W, Nb. Electronics, 2016, 5, P. 1201–1213.

2. Voiry D., Mohite A., Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev., 2015, 44, 2702.

3. Mak K.F., Lee C., Hone J., Shan J., Heinz T.F. Atomically thin MoS2: anew direct-gap semiconductor. Phys. Rev. Lett., 2010, 105, 136805.

4. Radisavljevic, Radenovic A., Brivio J., Giacometti V., Kis A. Preparation and Application of Graphene-like Tungsten Sulfide Thin Films by Chemical Vapor Deposition. Nat Nano, 2011, 6, P. 147–152.

5. Hernandez Ruiz K., Liu J., Tu R., Li M., Zhang S., Vargas Garcia J.R., Mu S., Li H., Goto T., Zhang L. Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets. J. Alloys Compd, 2018, 747, 100.

6. Deng Z.H., Li L., Ding W., Xiong K., Wei Z.D. Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction. Chem. Commun., 2015, 51, 1893.

7. Wang Y., Yu L., Lou X.W. Synthesis of highly uniform molybdenum–glycerate spheres and their conversion into hierarchical MoS2 hollow nano spheres for lithium-ion batteries. Angew. Chem. Int. Ed., 2016, 55, 7423.

8. Mervin Zhao, Ziliang Ye, Ryuji Suzuki, Yu Ye, Hanyu Zhu, Jun Xiao, Yuan Wang, Yoshihiro Iwasa, Xiang Zhang. Atomically phase-matched second-harmonic generation in a 2D crystal. Light: Science & Applications, 2016, 5, e16131.

9. Guo C., et al. Observation of superconductivity in 1T’-MoS2 nanosheets. J. of Materials Chemistry C, 2017, 5, 10855.

10. Fang Y., et al. Structural determination and nonlinear optical properties of MoS2 compound. JACS, 2019, 141, 790.

11. Al-Hussein H., Al-Sharr J., Othman S., Khamisi H. Study of the electronic, (structural and optical) properties of MoS2 nanostructures. Aleppo University Research J., 2023, 170, 1656.

12. Mmantsae Diale, Nolwazi Nombona, Pannan I. Kyesmen, Lebogang Manamela. Electrically Enhanced Transition Metal Dichalcogenides as Charge Transport Layers in Metallophthalocyanine-Based Solar Cells. Frontiers in Chemistry, 2020, 8.

13. Sathiyan S., Ahmad H., ChongW.Y., Lee S.H., Sivabalan S. Evolution of the Polarizing Effect of MoS2. IEEE Photonics J., 2015, 7 (6), 6100610.

14. Callegro L. Electrical Impedance: Principles, Measurement, and Applications. New York: CRC Press, 2013.

15. Sathe D.J., Chate P.A., Subrao Subrao Sargar, Kite S.V. Properties of chemically-deposited nanocrystalline MoS2 thin films. J. of Materials Science: Materials in Electronics, 2016, 27 (4).

16. Singh J., Verma N.K. Structural, optical and magnetic properties of cobalt-doped CdSe(MPA) nanoparticles. Bull. Mater. Sci., 2014, 37 (3), P. 541–547.

17. Oliver B.M., Cage J.M. Electronic Measurement and Instrumentation, McGraw-Hill, New York, 1971.

18. Grover F. Inductance Calculations (Dover Books on Electrical Engineering), Dover Publications, 2009.

19. Jun He, Laizhou Song, Jiayun Yan, Ning Kang, Yingli Zhang, Wei Wang. Hydrogen Evolution Reaction Property in Alkaline Solution of Molybdenum Disulfide. Metals, 2017, 7 (6), 211.

20. Pawelec B., Navarro R., Fierro J.L.G., Vasudevan P.T. Studies of molybdenum sulfide catalyst ex ammonium tetrathiomolybdate: effect of pretreatment on hydrodesulfurization of dibenzothiophene. Applied Catalysis A: General, 1998, 168, P. 205–217.


Review

For citations:


Alhussein H., AlSharr J.Q., Othman S., AlKhamisy H. Study of the electrical and electronic properties of crystalline molybdenum disulfide (MoS2-3R) semiconductor nano using alternating current (AC) measurements. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(6):633-643. https://doi.org/10.17586/2220-8054-2023-14-6-633-643

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)