Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Ceric phosphates and nanocrystalline ceria: selective toxicity to melanoma cells

https://doi.org/10.17586/2220-8054-2023-14-2-223-230

Abstract

Nanocrystalline cerium dioxide is a promising inorganic UV filter for sunscreen applications due to its high UV absorbance and non-toxicity to normal cells. Nanoscale CeO2 also showed selective cytotoxi city to cancer cells, thus ceria-containing materials are now regarded for the creation of both preventive and therapeutic compositions. At the same time, the interaction of ceria nanoparticles with cell membranes and phosphate-rich components of sunscreen compositions arise the interest to biocompatibility of ceric phos phates. Crystalline cerium(IV) phosphates can be a promising alternative for nanoscale CeO2 due to their low solubility, high redox stability and UV protective property. However, to date, there is no information on their toxicity to cancer cells. In this work, using the MTT, Live/Dead and MMP assays, we demonstrated for the first time that the inhibitory impact of ceric phosphates Ce(PO4)(HPO4)0.5(H2O)0.5 and NH4Ce2(PO4)3 on murine melanoma B16/F10 cell line in vitro is comparable to that of nanoscale CeO2, at high (500–1000 g/ml) concentrations.

About the Authors

T. O. Kozlova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Taisiya O. Kozlova



A. L. Popov
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Russian Federation

Anton L. Popov

Pushchino



M. V. Romanov
Institute of Theoretical and Experimental Biophysics of the Russian AcademyofSciences
Russian Federation

Mikhail V. Romanov

Pushchino



I. V. Savintseva
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Russian Federation

Irina V. Savintseva

Pushchino



D. N. Vasilyeva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University Higher School of Economics
Russian Federation

Darya N. Vasilyeva

Moscow



A. E. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Alexander E. Baranchikov

Moscow



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Vladimir K. Ivanov

Moscow



References

1. Achary S.N., Bevara S., Tyagi A.K. Recent progress on synthesis and structural aspects of rare-earth phosphates. Coord. Chem. Rev., 2017, 340, P. 266–297.

2. Behrsing T., Deacon G.B., Junk P.C. The chemistry of rare earth metals, compounds, and corrosion inhibitors. Rare Earth-Based Corrosion Inhibitors, Elsevier, Amsterdam, 2015, 1–37 p.

3. Sroor F.M.A., Edelmannand F.T. Tetravalent chemistry: Inorganic. Rare Earth Elem. Fundam. Appl., John Wiley & Sons Ltd, Chichester, 2012, P. 313–320.

4. Scir`e S., Palmisano L. Cerium and cerium oxide: A brief introduction. Cerium Oxide (CeO2): Synthesis, Properties and Applications, Elsevier, Amsterdam, 2019, 1–12 p.

5. Montini T., Melchionna M., Monai M., Fornasiero P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev., 2016, 116(10), P. 5987–6041.

6. Mishra U.K., Chandel V.S., Singh O.P. A review on cerium oxide–based catalysts for the removal of contaminants. Emergent Mater., 2022, 5(5), P. 1443–1476.

7. Voncken J.H.L. The Rare Earth Elements. Springer International Publishing, Switzerland, 2016, 1–127 p.

8. Ermakov A., Popov A., Ermakova O., Ivanova O., Baranchikov A., Kamenskikh K., Shekunova T., Shcherbakov A., Popova N., Ivanov V. The first inorganic mitogens: Cerium oxide and cerium fluoride nanoparticles stimulate planarian regeneration via neoblastic activation. Mater. Sci. Eng. C, 2019, 104, P. 109924.

9. Shcherbakov A.B., Reukov V.V., Yakimansky A.V., Krasnopeeva E.L., Ivanova O.S., Popov A.L., Ivanov V.K. CeO2 Nanoparticle-Containing Polymers for Biomedical Applications: A Review. Polymers, 2021, 13(6), P. 924.

10. Rajeshkumar S., Naik P. Synthesis and biomedical applications of Cerium oxide nanoparticles– A Review. Biotechnol. Reports, 2018, 17, P. 1–5.

11. Egambaram O.P., Kesavan P.S., Ray S.S. Materials Science Challenges in Skin UV Protection: A Review. Photochem. Photobiol., 2020, 96(4), P. 779–797.

12. Parwaiz S., Khan M.M., Pradhan D. CeO2-based nanocomposites: An advanced alternative to TiO2 and ZnO in sunscreens. Mater. Express, 2019, 9(3), P. 185–202.

13. Zholobak N.M., Shcherbakov A.B., Bogorad-Kobelska A.S., Ivanova O.S., Baranchikov A.Y., Spivak N.Y., Ivanov V.K. Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced and UV-induced damage. J. Photochem. Photobiol. B, 2014, 130, P. 102–108.

14. Kolesnik I.V., Shcherbakov A.B., Kozlova T.O., Kozlov D.A., Ivanov V.K. Comparative Analysis of Sun Protection Characteristics of Nanocrys talline Cerium Dioxide. Russ. J. Inorg. Chem., 2020, 65(7), P. 960–966.

15. Gallagher R.P., Lee T.K. Adverse effects of ultraviolet radiation: A brief review. Prog. Biophys. Mol. Biol., 2006, 92(1), P. 119–131.

16. Gao Y., Chen K., Ma J.L., Gao F. Cerium oxide nanoparticles in cancer. Onco. Targets. Ther., 2014, 7, P. 835–840.

17. Shcherbakov A.B., Zholobak N.M., Spivak N.Y., Ivanov V.K. Advances and prospects of using nanocrystalline ceria in cancer theranostics. Russ. J. Inorg. Chem., 2014, 59(13), P. 1556–1575.

18. Mihai M.M., Holban A.M., C˘alugˇ areanu A., Orzan O.A. Recent advances in diagnosis and therapy of skin cancers through nanotechnological approaches. Nanostructures Cancer Ther., 2017, P. 285–305.

19. Ali D., Alarifi S., Alkahtani S., AlKahtane A.A., Almalik A. Cerium Oxide Nanoparticles Induce Oxidative Stress and Genotoxicity in Human Skin Melanoma Cells. Cell Biochem. Biophys., 2015, 71(3), P. 1643–1651.

20. Aplak E., Von Montfort C., Haasler L., Stucki D., Steckel B., Reichert A.S., Stahl W., Brenneisen P. CNP mediated selective toxicity on melanoma cells is accompanied by mitochondrial dysfunction. PLoS One, 2020, 15(1), P. e0227926.

21. Yong J.M., Fu L., Tang F., Yu P., Kuchel R.P. Whitelock J.M., Lord M.S. ROS-Mediated Anti-Angiogenic Activity of Cerium Oxide Nanoparticles in Melanoma Cells. ACS Biomater. Sci. Eng., 2022, 8(2), P. 512–525.

22. Ni P., Wei X., Guo J., Ye X., Yang S. On the origin of the oxidizing ability of ceria nanoparticles. RSC Adv., 2015, 5(118), P. 97512–97519.

23. De Marzi L., Monaco A., De Lapuente J., Ramos D., Borras M., Di Gioacchino M., Santucci S., Poma A. Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro. Int. J. Mol. Sci., 2013, 14(2), P. 3065–3077.

24. Singh S., Dosani T., Karakoti A.S., Kumar A., Seal S. Self W.T. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials, 2011, 32(28), P. 6745–6753.

25. Rozhin P., Melchionna M., Fornasiero P., Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. Nanomaterials, 2021, 11(9), P. 2259.

26. Walther R., Huynh T.H., Monge P., Fruergaard A.S., Mamakhel A. Zelikin A.N. Ceria Nanozyme and Phosphate Prodrugs: Drug Synthesis through Enzyme Mimicry. ACS Appl. Mater. Interfaces, 2021, 13(22), P. 25685–25693.

27. Yabe S., Sato T. Cerium oxide for sunscreen cosmetics. J. Solid State Chem., 2003, 171(1–2), P. 7–11.

28. Onoda H., Iwashita M. Synthesis of novel white pigments by shaking cerium compounds with phosphoric acid. Emergent Mater., 2022.

29. Masui T., Hirai H., Imanaka N., Adachi G. New sunscreen materials based on amorphous cerium and titanium phosphate. J. Alloys Compd., 2006, 408–412, P. 1141–1144.

30. Wawrzynczak A., Feliczak-Guzik A., Nowak I. Nanosunscreens: From nanoencapsulated to nanosized cosmetic active forms. Nanobiomaterials Galen. Formul. Cosmet. Appl. Nanobiomaterials, 2016, P. 25–46.

31. Seixas V.C., Serra O.A. Stability of sunscreens containing CePO4: Proposal for a new inorganic UV filter. Molecules, 2014, 19(7), P. 9907–9925.

32. De Lima J.F., Serra O.A. Cerium phosphate nanoparticles with low photocatalytic activity for UV light absorption application in photoprotection. Dyes Pigm., 2013, 97(2), P. 291–296.

33. Lima J.F., De Sousa Filho P.C., Serra O.A. Single crystalline rhabdophane-type CePO4 nanoparticles as efficient UV filters. Ceram. Int., 2016, 42(6), P. 7422–7431.

34. Onoda H., Tanaka R. Synthesis of cerium phosphate white pigments from cerium carbonate for cosmetics. J. Mater. Res. Technol., 2019, 8(6), P. 5524–5528.

35. Sato T., Yin S. Morphology Control of Cerium Phosphates for Uv-Shielding Application. Phosphorus Res. Bull., 2010, 24, P. 43–48.

36. Yin S., Saito M., Liu X., Sato T. Preparation and Characterization of Plate-like Cerium Phosphate / Nanosize Calcia Doped Ceria Composites by Precipitation Method. Phosphorus Res. Bull., 2011, 25, P. 68–71.

37. Sato T., Sato C., Yin S. Optimization of Hydrothermal Synthesis of Plate-Like Hydrated Cerium Phosphates and Their Photochemical Properties. Phosphorus Res. Bull., 2008, 22, P. 17–21.

38. Sato T., Li R., Sato C., Yin S. Synthesis and Photochemical Properties of Micaceous Cerium Phosphates. Phosphorus Res. Bull., 2007, 21, P. 44–47.

39. Kozlova T.O., Popov A.L., Kolesnik I.V., Kolmanovich D.D., Baranchikov A.E., Shcherbakov A.B., Ivanov V.K. Amorphous and crystalline cerium(iv) phosphates: biocompatible ROS-scavenging sunscreens. J. Mater. Chem. B, 2022, 10(11), P. 1775–1785.

40. Baranchikov A.E., Polezhaeva O.S., Ivanov V.K., Tretyakov Y.D. Lattice expansion and oxygen non-stoichiometry of nanocrystalline ceria. Crys tEngComm., 2010, 12(11), P. 3531–3533.

41. Nazaraly M., Wallez G., Chan´ eac C., Tronc E., Ribot F., Quarton M., Jolivet J.P. The first structure of a cerium(IV) phosphate: Ab initio rietveld analysis of CeIV (PO4)(HPO4)05(H4O)05. Angew. Chemie- Int. Ed., 2005, 44, P. 5691–5694.

42. Shekunova T.O., Istomin S.Y., Mironov A.V., Baranchikov A.E., Yapryntsev A.D., Galstyan A.A., Simonenko N.P., Gippius A.A., Zhurenko S.V., Shatalova T.B., Skogareva L.S., Ivanov V.K. Crystallization Pathways of Cerium(IV) Phosphates Under Hydrothermal Conditions: A Search for New Phases with a Tunnel Structure. Eur. J. Inorg. Chem., 2019, 2019(27), P. 3242–3248.

43. Yang Y., Mao Z., Huang W., Liu L., Li J., Li J., Wu Q. Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets. Sci. Rep., 2016, 6(1), P. 35344.

44. Suski J.M., Lebiedzinska M., Bonora M., Pinton P., Duszynski J., Wieckowski M.R. Relation Between Mitochondrial Membrane Potential and ROSFormation. Methods Mol. Biol., 2012, 810, P. 183–205.

45. Kumari R., Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front. Cell Dev. Biol., 2021, 9, P. 645593.

46. Shcherbakov A.B., Zholobak N.M., Ivanov V.K. Biological, biomedical and pharmaceutical applications of cerium oxide. Cerium Oxide (CeO2): Synthesis, Properties and Applications, Elsevier, Amsterdam, 2020, P. 279–358.

47. Lin S., Wang X., Ji Z., Chang C.H., Dong Y., Meng H., Liao Y.-P., Wang M., Song T.-B., Kohan S., Xia T., Zink J.I., Lin S., Nel A.E. Aspect Ratio Plays a Role in the Hazard Potential of CeO2 Nanoparticles in Mouse Lung and Zebrafish Gastrointestinal Tract. ACS Nano, 2014, 8(5), P. 4450–4464.

48. Lin W., Huang Y., Zhou X.-D., Ma, Y. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells. Int. J. Toxicol., 2006, 25(6), P. 451–457.

49. Zeyons O., Thill A., Chauvat F., Menguy N., Cassier-Chauvat C., Or´ear C., Daraspe J., Auffan M., Rose J., Spalla O. Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. Nanotoxicology, 2009, 3(4), P. 284–295.

50. Rogers N.J., Franklin N.M., Apte S.C., Batley G.E., Angel B.M., Lead J.R., Baalousha M. Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ. Chem., 2010, 7(1), P. 50–60.

51. Pulido-Reyes G., Rodea-Palomares I., Das S., Sakthivel T.S., Leganes F., Rosal R., Seal S., Fern´ andez-Pin˜as F. Untangling the biological effects of cerium oxide nanoparticles: The role of surface valence states. Sci. Rep., 2015, 5, P. 15613.

52. CaputoF., Giovanetti A., Corsi F., Maresca V., Briganti S., Licoccia S., Traversa E., Ghibelli L. Cerium oxide nanoparticles reestablish cell integrity checkpoints and apoptosis competence in irradiated HaCaT cells via novel redox-independent activity. Front. Pharmacol., 2018, 9, P. 1183.

53. Corsi F., Caputo F., Traversa E., Ghibelli L. Not only redox: The multifaceted activity of cerium oxide nanoparticles in cancer prevention and therapy. Front. Oncol., 2018, 8, P. 1–7.

54. Schwabe F., Schulin R., Rupper P., Rotzetter A., Stark W. Nowack B. Dissolution and transformation of cerium oxide nanoparticles in plant growth media. J. Nanopart. Res., 2014, 16, P. 2668.

55. Dahle J.T., Livi K., Arai Y. Effects of pH and phosphate on CeO2 nanoparticle dissolution. Chemosphere, 2015, 119, P. 1365–1371.

56. Plakhova T.V., Romanchuk A.Y., Yakunin S.N., Dumas T., Demir S., Wang S., Minasian S.G., Shuh D.K., Tyliszczak T., Shiryaev A.A., Egorov A.V., Ivanov V.K., Kalmykov S. N. Solubility of nanocrystalline cerium dioxide: Experimental data and thermodynamic modeling. J. Phys. Chem. C., 2016, 120(39), P. 22615–22626.

57. Avramescu M.L., Ch´ enier M., Beauchemin S., Rasmussen P. Dissolution Behaviour of Metal-Oxide Nanomaterials in Various Biological Media. Nanomaterials, 2023, 13(1), P. 26.

58. Romanchuk A.Y., Shekunova T.O., Larina A.I., Ivanova O.S., Baranchikov A.E., Ivanov V.K., Kalmykov S.N. Sorption of Radionuclides onto Cerium(IV) Hydrogen Phosphate Ce(PO4)(HPO4)05(H2O)05. Radiochemistry, 2019, 61(6), P. 719–723.

59. Kozlova T.O., Vasil’eva D.N., Kozlov D.A., Teplonogova M.A., Birichevskaya K.V., Baranchikov A.E., Gavrikov A.V., Ivanov V.K. On the Chemical Stability of CeIV (PO4)(HPO4)05(H2O)05 in Alkaline Media. Russ. J. Inorg. Chem., 2022, 67(12), P. 1901–1907.


Review

For citations:


Kozlova T.O., Popov A.L., Romanov M.V., Savintseva I.V., Vasilyeva D.N., Baranchikov A.E., Ivanov V.K. Ceric phosphates and nanocrystalline ceria: selective toxicity to melanoma cells. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):223-230. https://doi.org/10.17586/2220-8054-2023-14-2-223-230

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)