Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Pyrochlore phase in the Bi2O3–Fe2O3–WO3–(H2O) system: its formation by hydrothermal synthesis in the low-temperature region of the phase diagram

https://doi.org/10.17586/2220-8054-2023-14-2-242-253

Abstract

The present paper investigates features of a (Bi, Fe, )2(Fe, W)2O6O cubic pyrochlore-structured phase (hereinafter BFWO) formation in the Bi2O3–Fe2O3–WO3–(H2O) system under the hydrothermal syn thesis conditions at T < 200 C and in the range of pH < 1. It was found that the BFWO phase is formed even when the amorphous precursor suspension is less than 100 C. The BFWO phase particles have a con ditionally spherical morphology and are polycrystalline. The dependency of the average particle size on the synthesis temperature correlates well with the dependency of the average crystallite size on this parameter: both values increase abruptly with an increase in the amorphous precursor suspension treatment temperature from 90 to 110 C (from 140 and 70 nm to 180 and 90 nm, respectively), and with a further increase in the hydrothermal treatment temperature to 190 C, they increase more smoothly (up to 210 and 110 nm, respectively). It was found that the average number of crystallites in a particle is 9 units regardless of the synthesis temperature, i.e. an increase in the BFWO phase particle size with the increasing temperature (in the considered temperature range) occurs mainly due to an increase in the size of their constituent crystallites.

About the Authors

M. S. Lomakin
Ioffe Institute; St. Petersburg Electrotechnical University “LETI”
Russian Federation

Makariy S. Lomakin

26, Politekhnicheskaya St., 194021, St. Petersburg

5, Professor Popov St., 197376, St. Petersburg



O. V. Proskurina
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation

Olga V. Proskurina

26, Politekhnicheskaya St., 194021, St. Petersburg

26, Moskovsky Ave., 190013, St. Petersburg



V. V. Gusarov
Ioffe Institute
Russian Federation

Victor V. Gusarov

26, Politekhnicheskaya St., 194021, St. Petersburg



References

1. Greedan J.E. Frustrated rare earth magnetism: spin glasses, spin liquids and spin ices in pyrochlore oxides. Journal of Alloys and Compounds, 2006, 408–412, P. 444–455.

2. Gardner J.S., Gingras M.J.P., Greedan J.E. Magnetic pyrochlore oxides. Reviews of Modern Physics, 2010, 82(1), P. 53–107.

3. Jitta R.R., Gundeboina R., Veldurthi N.K., Guje R., Muga V. Defect pyrochlore oxides: as photocatalyst materials for environmental and energy applications– a review. Journal of Chemical Technology & Biotechnology, 2015, 90(11), P. 1937–1948.

4. Anantharaman A.P., Dasari H.P. Potential of pyrochlore structure materials in solid oxide fuel cell applications. Ceramics International, 2021, 47(4), P. 4367–4388.

5. Wiebe C.R., Hallas A.M. Frustration under pressure: Exotic magnetism in new pyrochlore oxides. APL Materials, 2015, 3(4), P. 041519.

6. Ellert O.G., Egorysheva A.V., Gajtko O.M., Kirdyankin D.I., Svetogorov R.D. Highly frustrated Bi-Cr-Sb-O pyrochlore with spin-glass transition. Journal of Magnetism and Magnetic Materials, 2018, 463, P. 13–18.

7. Egorysheva A.V., Ellert O.G., Gaitko O.M., Brekhovskikh M.N., Zhidkova I.A., Maksimov Yu.V. Fluorination of Bi1.8Fe1.2SbO7 pyrochlore solid solutions. Inorganic Materials, 2017, 53(9), P. 962–968.

8. Babu G.S., Bedanta S., Valant M. Evidence of the spin glass state in (Bi188Fe012)(Fe142Te058)O687 pyrochlore. Solid State Communication, 2013, 158, P. 51–53.

9. Jusoh F.A., Tan K.B., Zainal Z., Chen S.K., Khaw C.C., Lee O.J. Novel pyrochlores in the Bi2O3–Fe2O3–Ta2O5 (BFT) ternary system: synthesis, structural and electrical properties. Journal of Materials Research and Technology, 2020, 9(5), P. 11022–11034.

10. Zhuk N.A., Krzhizhanovskaya M.G., Sekushin N.A., Sivkov D.V., Muravyov V.A. Nb-doping effect on microstructure, thermal and dielectric properties of bismuth nickel tantalate pyrochlore. Ceramics International, 2023, 49(2), P. 2934–2940.

11. Valant M., Babu G.S., Vrcon M., Kolodiazhnyi T., Axelsson A.-K. Pyrochlore range from Bi2O3–Fe2O3–TeO3 system for LTCC and photocatal ysis and the crystal structure of new Bi3(Fe056Te044)3O11. Journal of the American Ceramic Society, 2012, 95(2), P. 644–650.

12. Playford H.Y., Modeshia D.R., Barney E.R., Hannon A.C., Wright C.S., Fisher J.M., Amieiro-Fonseca A., Thompsett D., O’Dell L.A., Rees G.J., Smith M.E., Hanna J.V., Walton R.I. Structural Characterization and Redox Catalytic Properties of Cerium(IV) Pyrochlore Oxides. Chemistry of Materials, 2011, 23(24), P. 5464–5473.

13. Zhuk N.A., Krzhizhanovskaya M.G., Koroleva A.V., Semenov V.G., Selyutin A.A., Lebedev A.M., Nekipelov S.V., Sivkov D.V., Kharton V.V., Lutoev V.P., Makeev B.A. Fe,Mg-Codoped Bismuth Tantalate Pyrochlores: Crystal Structure, Thermal Stability, Optical and Electrical Properties, XPS, NEXAFS, ESR, and 57Fe M¨ ossbauer Spectroscopy Study. Inorganics, 2023, 11(1), P. 8.

14. Lomakin M.S., Proskurina O.V., Sergeev A.A., Buryanenko I.V., Semenov V.G., Voznesenskiy S.S., Gusarov V.V. Crystal structure and optical properties of the Bi–Fe–W–O pyrochlore phase synthesized via a hydrothermal method. Journal of Alloys and Compounds, 2021, 889, P. 161598.

15. Lomakin M.S., Proskurina O.V., Levin A.A., Sergeev A.A., Leonov A.A., Nevedomsky V.N., Voznesenskiy S.S. Pyrochlore Phase in the Bi2O3 Fe2O3–WO3–(H2O) System: its Formation by Hydrothermal-Microwave Synthesis and Optical Properties. Russian Journal of Inorganic Chem istry, 2022, 67(6), P. 820–829.

16. Lomakin M.S., Proskurina O.V., Danilovich D.P., Panchuk V.V., Semenov V.G., Gusarov V.V. Hydrothermal Synthesis, Phase Formation and Crystal Chemistry of the pyrochlore/Bi2WO6 and pyrochlore/-Fe2O3 Composites in the Bi2O3–Fe2O3–WO3 System. Journal of Solid State Chemistry, 2020, 282, P. 121064.

17. Annamalai K., Radha R., Vijayakumari S., Kichanov S.E., Balakumar S. Insight into the investigation on nanostructured defect pyrochlore Bi2 xFexWO6 and its photocatalytic degradation of mixed cationic dyes. Materials Science in Semiconductor Processing, 2022, 150(2), P. 106961.

18. Annamalai K., Radha R., Vijayakumari S., Balakumar S. High-temperature stabilized defect pyrochlore Bi2 xFexWO6 nanostructures and their effects on photocatalytic water remediation and photo-electrochemical oxygen evolution kinetics. Catalysis Science & Technology, 2023, 13(5), P. 1409–1424.

19. Shandilya M., Rai R., Singh J. Review: hydrothermal technology for smart materials. Advances in Applied Ceramics, 2016, 115(6), P. 354–376.

20. Modeshia D.R., Walton R.I. Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chemical Society Reviews, 2010, 39(11), P. 4303–4325.

21. Ejsmont A., Goscianska J. Hydrothermal Synthesis of ZnO Superstructures with Controlled Morphology via Temperature and pH Optimization. Materials, 2023, 16(4), P. 1641.

22. Xiong D., Qi Y., Li X., Liu X., Tao H., Chen W., Zhao X. Hydrothermal synthesis of delafossite CuFeO2 crystals at 100 C. RSC Advances, 2015, 5, P. 49280–49286.

23. Grendal O., Blichfeld A., Skjærvø S., van Beek W., Selbach S., Grande T., Einarsrud M.-A. Facile Low Temperature Hydrothermal Synthesis of BaTiO3 Nanoparticles Studied by In Situ X-ray Diffraction. Crystals, 2018, 8(6), P. 253.

24. Zhang X., Liu X., Lu P., Wang L., Zhang Z., Wang X., Wang Z. Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates. The Scientific World Journal, 2015, 2015, P. 254165.

25. Almjasheva O.V., Popkov V.I., Proskurina O.V., Gusarov V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosystems: Physics Chemistry Mathematics, 2022, 13(2), P. 164–180.

26. Almjasheva O.V., Lomanova N.A., Popkov V.I., Proskurina O.V., Tugova E.A., Gusarov V.V. The minimum size of oxide nanocrystals: phe nomenological thermodynamic vs crystal-chemical approaches. Nanosystems: Physics Chemistry Mathematics, 2019, 10(4), P. 428–437.

27. WangY., Zhang S., Zhong Q., Zeng Y., Ou M., Cai W. Hydrothermal Synthesis of Novel Uniform Nanooctahedral Bi3(FeO4)(WO4)2 Solid Oxide and Visible-Light Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2016, 55(49), P. 12539–12546.

28. Lomakin M.S., Proskurina O.V., Gusarov V.V. Influence of hydrothermal synthesis conditions on the composition of the pyrochlore phase in the Bi2O3–Fe2O3–WO3 system, Nanosystems: Physics Chemistry Mathematics, 2020, 11(2), P. 246–251.

29. Proskurina O.V., Tomkovich M.V., Bachina A.K., Sokolov V.V., Danilovich D.P., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of Nanocrystalline BiFeO3 under Hydrothermal Conditions. Russian Journal of General Chemistry, 2017, 87(11), P. 2507–2515.

30. Terlan B., Levin A.A., B¨orrnert F., Zeisner J., Kataev V., Schmidt M., Eychm¨ uller A., A Size-Dependent Analysis of the Structural, Surface, Colloidal, and Thermal Properties of Ti1 xB2 (x =0.03–0.08) Nanoparticles. European Journal of Inorganic Chemistry, 2016, 21, P. 3460–3468.

31. Terlan B., Levin A.A., B¨ orrnert F., Simon F., Oschatz M., Schmidt M., Cardoso-Gil R., Lorenz T., Baburin I.A., Joswig J.-O., Eychm¨ uller A. Effect of Surface Properties on the Microstructure, Thermal, and Colloidal Stability of VB2 Nanoparticles. Chemistry of Materials, 2015, 27(14), P. 5106–5115.

32. Smith F.G., Kidd D.J. Hematite-goethite relation in neutral and alkaline solution under pressure. American Mineralogist, 1949, 34(5), P. 403–412.

33. Gusarov V.V., Egorov F.K., Ekimov S.P., Suvorov S.A. A Mossbauer study of the E kinetics of the film states formation at the interaction of magnesium and iron oxides. The Journal of Physical Chemistry, 1987, 61(6), P. 1652–1654. (in Russian)

34. Kirillova S.A., Almjasheva O.V., Panchuk V.V., Semenov V.G. Solid-phase interaction in ZrO2–Fe2O3 nanocrystalline system. Nanosystems: Physics Chemistry Mathematics, 2018, 9(6), P. 763–769.


Review

For citations:


Lomakin M.S., Proskurina O.V., Gusarov V.V. Pyrochlore phase in the Bi2O3–Fe2O3–WO3–(H2O) system: its formation by hydrothermal synthesis in the low-temperature region of the phase diagram. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):242-253. https://doi.org/10.17586/2220-8054-2023-14-2-242-253

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)