Structural and magnetic study of Tb3+ doped zinc ferrite by sol-gel auto-combustion technique
https://doi.org/10.17586/2220-8054-2023-14-2-254-263
Abstract
In this study, the influence of Tb3+ substitution in zinc ferrite is reported. ZnTbxFe(2-x)O4 (x = 0, 0025, 005, 0075, 01, 0125, and 015) were prepared using sol-gel auto-combustion technique. All the samples were sintered at 400 C for 4 hours. The structure has been studied using XRD, FTIR, UV-visible, and VSM. X-ray diffraction evaluation demonstrates formation of spinel ferrite with nano size distribution. Vibrating sample magnetometer was used to study the magnetic properties of the samples. It was found that as terbium content increases, the coercive field decreases while the saturation magnetization increases. The Tb3+ doped nano crystalline zinc ferrites show ferrimagnetic behavior. FTIR analysis show the presence of two expected bands attributed to tetrahedral and octahedral metal oxygen vibrations at 320 and 450 cm -1.
About the Authors
Sh. G. JamdadeIndia
Shrinivas G. Jamdade – Department of Physics
Pune
P. S. Tambade
India
Popat S. Tambade – Department of Physics, Prof. Ramkrishna More Arts
Akurdi, Pune
S. M. Rathod
India
Sopan M. Rathod – Department of Physics
Pune
References
1. Hu J.Y., Liu X.S., Kan X.C., Feng S.J., Liu C.C., Wang W., Rehman K.M.U., Shazed M., Zhou S.Q., Wu Q.Y. Characterization of texture and magnetic properties of Ni05Zn05TixFe2 xO4 spinel ferrites. J. Magn. Magn. Mater., 2019, 489, 165411.
2. Li L.Z., Zhong X.X., Wang R., Tu X.Q., Peng L. Structural and magnetic properties of Co-substituted NiCu ferrite nanopowders. J. Magn. Magn. Mater., 2017, 433, P. 98–103.
3. Kokare M.K., Jadhav N.A., Kumar Y., Jadhav K.M., Rathod S.M. Effect of Nd3+ doping on structural and magnetic properties of Ni05Co05Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto combustion method. J. of Alloys and Compounds, 2018, 748, P. 1053 1061.
4. Kokare M.K., Jadhav N.A., Singh V., Rathod S.M. Effect of Sm3+ substitution on the structural and magnetic properties of NiCo nanoferrites. Optics and Laser Technology, 2019, 112, P. 107–116.
5. Gao Y., Wang Z., Pei J.J., Zhang H.M. Structure and magnetic properties correlated with cation distribution of Ni05 xMoxZn05Fe2O4 ferrites prepared by sol-gel auto-combustion method. Ceram. Int., 2018, 44, P. 20148–20153.
6. Rekorajska A., Cichowicz G., Cyranski M.K., Grden M., Pekala M., Blanchard G.J., Krysinski P. Synthesis and Characterization of Tb-Doped Nanoferrites. Chem. Nano Mat., 2018, 4, P. 231–242.
7. Rehman A.U., Morley N.A., Amin N., Arshad M.I., Nabi M.A., Mahmood K., Iqbal F. Controllable synthesis of La3+ doped Zn05Co025Cu025Fe2 xLaxO4 (x = 00, 00125, 0025, 00375, 005) nano-ferrites by sol-gel auto-combustion route. Ceram. Int., 2020, 46 (18A), P. 29297–29308.
8. Awati V., Badave K., Bobade D. Effect of Tb3+ substitution on structural, optical and magnetic properties of NiCuZnFe2O4 prepared by sol-gel route. Indian J. of Physics, 2022, 96 (1), P. 89–101.
9. Bulai G., Diamandescu L., Dumitru I., Gurlui S., Feder M., Caltun O.F. Effect of rare earth substitution in cobalt ferrite bulk materials. J. Magn. Magn. Mater., 2015, 390, P. 123–131.
10. Hussain K., Amin N., Arshad M.I. Evaluation of structural, optical, dielectric, electrical, and magnetic properties of Ce3+ doped Cu05Cd025Co025Fe2 xO4 spinel nano-ferrites. Ceram. Int., 2021, 47, P. 3401–3410.
11. Kumar K.V. Tunable optical bandgap of gadolinium substituted nickel-zinc ferrite nanoparticles-effect of calcination temperature on its optical parameters. Advances in Materials Physics and Chemistry, 2022, 12, P. 33–45.
12. Rathod S.M., Deonikar V.G., Mirage P.P. Synthesis of Nano-Sized Cerium Doped Copper Ferrite, Their Magnetic and Optical Studies. Adv. Sci. Lett., 2016, 22, P. 964–966.
13. Ghodake J.S., Kambale R.C., Shinde T.J., Maskar P.K., Suryavanshi S.S. Magnetic and microwave absorbing properties of Co2+ substituted nickel–zinc ferrites with the emphasis on initial permeability studies. J. Magn. Magn. Mater., 2016, 401, P. 938–942.
14. Kumar R., Kumar H., Singh R.R., Barman P.B. Variation in magnetic and structural properties of Co-doped Ni–Zn ferrite nanoparticles: a different aspect. J. Sol-Gel Sci. Technol., 2016, 78, P. 566–575.
15. Bhame S.D., Joy P. Magnetoelastic properties of terbium substituted cobalt ferrite. Chemical Physics Letters, 2017, 685, P. 465–469.
16. Liu Z., Peng Z., Lv C., Fu X. Doping effect of Sm3+ on magnetic and dielectric properties of Ni–Zn ferrites. Ceram. Int., 2017, 43, P. 1449–1454.
17. Li L.Z., Zhong X.X., Wang R., Tu X.Q. Structural, magnetic and electrical properties of Zr-substitued NiZnCo ferrite nanopowders. J. Magn. Magn. Mater., 2017, 435, P. 58–63.
18. Kabbur S.M., Waghmare S.D., Nadargi D.Y., Sartale S.D., Kambale R.C., Ghodake U.R., et al. Magnetic interactions and electrical properties of Tb3+ substituted NiCuZn ferrites. J. Magn. Magn. Mater., 2019, 473, P. 99–108.
19. Slimani Y., Almessiere M.A., G¨ uner S., Tashkandi N.A., Baykal A., Sarac M.F., Nawaz M.U., Ercan I. Calcination effect on the magneto-optical properties of vanadium substituted NiFe2O4 nanoferrites. J. Mater. Sci.: Mater. Electron, 2019, 30 (10), P. 9143–9154.
20. Slimani Y., Almessiere M.A., G¨ uner S., Kurtan U., Shirsath S.E., Baykal A., Ercan I. Magnetic and microstructural features of Dy3+ substituted NiFe2O4 nanoparticles derived by sol-gel approach. J. Sol-Gel Sci. Technol., 2020, 95 (1), P. 202–210.
21. Hua J., Maa Y., Kana X., Liua C., Zhanga X., Rao R., Wanga M., Zheng G. Investigations of Co substitution on the structural and magnetic properties of Ni–Zn spinel ferrite. J. Magn. Magn. Mater., 2020, 513, 167200.
22. Devi H.F., Thoithoi Devi K., Singh T.D. Synthesis, characterization, optical and electrical properties of citrate mediated terbium doped ZnO nanoparticles for multifunctional applications. Integrated Ferroelectrics, 2020, 204, P. 81–89.
23. Deonikar V.G., Kulkarni V.D., Rathod S.M., Kima H. Fabrication and characterizations of structurally engineered lanthanum substituted nickel cobalt ferrites for the analysis of electric and dielectric properties. Inorganic Chemistry Communications, 2020, 119, 108074.
24. Skoog D.A., Holler E.J.F., Crouch S.R. Principles of Instrumental Analysis. Thomson Books Company Limited, 2007.
25. Smit J. Magnetic Properties of Materials. McGrawHill Book Company, New York, 1971.
Review
For citations:
Jamdade Sh.G., Tambade P.S., Rathod S.M. Structural and magnetic study of Tb3+ doped zinc ferrite by sol-gel auto-combustion technique. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):254-263. https://doi.org/10.17586/2220-8054-2023-14-2-254-263