Formation of a 10 ˚A phase with halloysite structure under hydrothermal conditions with varying initial chemical composition
https://doi.org/10.17586/2220-8054-2023-14-2-264-271
Abstract
We studied the process of obtaining nanostructured halloysite by varying the parameters for cre ating the initial composition. The initial composition was synthesized by co-hydrolysis of (C3H7O)3Al and (C2H5O)4Si in the C6H14–NH3H2O system. Aluminum hydrosilicate with the composition Al2Si2O5(OH)4 was synthesized under hydrothermal conditions (220 C, 2 MPa, 96 h). Particles of plate-like morphology with av erage length 100– 200 nm and 60 nm thickness were obtained. The PXRD patterns revealed the presence of two phases. Plate-like kaolinites are found. Also we observed the formation of a halloysite-like phase. Studies of synthesized samples by IR spectroscopy and thermal analysis revealed the presence of organic-modified hydrosilicate with phase transition around 412 C. The resulting phase is promising for studying the processes of adsorption and further exfoliation.
About the Authors
N. A. LeonovRussian Federation
Nikita A. Leonov
26 Politekhnicheskaya, 194021, St. Petersburg
D. A. Kozlov
Russian Federation
Daniil A. Kozlov
Leninsky gory, 1, 119991, Moscow
Leninsky pr., 31, 119991, Moscow
D. A. Kirilenko
Russian Federation
Demid A. Kirilenko
26 Politekhnicheskaya, 194021, St. Petersburg
N. A. Bert
Russian Federation
Nikolay A. Bert
26 Politekhnicheskaya, 194021, St. Petersburg
A. O. Pelageikina
Russian Federation
Anna O. Pelageikina
26 Politekhnicheskaya, 194021, St. Petersburg
A. A. Nechitailov
Russian Federation
Andrey A. Nechitailov
26 Politekhnicheskaya, 194021, St. Petersburg
M. B. Alikin
Russian Federation
Mikhail B. Alikin
190013, St. Petersburg
A. A. Krasilin
Russian Federation
Andrei A. Krasilin
26 Politekhnicheskaya, 194021, St. Petersburg
References
1. Pimneva L.A. Study of the adsorption of manganese ions (II) in natural kaolinite. Modern high technologies, 2017, 7, P. 61–65.
2. Minyukova T.P., Shtertser N.V., Khassin A.A., Plyasova L.M., Kustova G.N., Zaikovskii V.I., Baronskaya N.A., Kuznetsova A.V., Davydova L.P., Yur’eva T.M., Shvedenkov Yu.G., Van Den Heuvel J.C. Evolution of Cu–Zn–Si oxide catalysts in the course of reduction and reoxidation as studied by in situ x-ray diffraction analysis, transmission electron microscopy, and magnetic susceptibility methods. Kinetics and Catalysis, 2008, 49 (6), P. 821–830.
3. Bikbau M.Ya. Nano cement morphological peculiarities, structure properties and concrete on their base. Concrete technology, 2014, 4, P. 38–44.
4. Koji Wada, Naganori Yoshinaga. The structure of “imogolite”. American Mineralogist, 1969, 52 (1–2), P. 50–71.
5. Levin A., Khrapova E., Kozlov D., Krasilin A., Gusarov V. Structure refinement, microstrains and crystallite sizes of Mg–Ni-phyllosilicate nano scroll powders. J. Appl. Cryst., 2022, 55, P. 484–502.
6. Bates T.F., Sand L.B., Mink J.F. Tubular Crystals of Chrysotile Asbestos. Science, 1950, 111, P. 512–513.
7. Bates T.F., Hildebrand F.A., Swineford A. Morphology and structure of endellite and halloysite. American Mineralogist, 1950, 35 (7–8), P. 463 484.
8. Lukuttsova N.P., Golovin S.N. Aggregative stability of aqueous suspensions of halloysite nanotubes. Construction materials, 2018, 1 (2), P. 4–10.
9. Arsent’ev M.Y., Golubeva O.Y. Comparative Study of Internal Mechanical Stresses in the Structures of Montmorillonite and Halloysite. Glass Phys. Chem., 2020, 46, P. 598–604.
10. Szczepanik B., Slomkiewicz P., Garnuszek M., Czech K., Banas D., Kubala-Kukus A., Stabrawa I. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies. J. of Molecular Structure, 2015, 1084, P. 16–22.
11. Krasilin A.A., Khrapova E.K., Maslennikova T.P. Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Appli cations. Crystals, 2020, 10, 654.
12. Parfitt R.L., Furkert R. J., Henmi T. Identification and Structure of Two Types of Allophane from Volcanic Ash Soils and Tephra. Clays and Clay Minerals, 1980, 28, P. 328–334.
13. Krasilin A.A., Khrapova E.K., Nomin´e A., Ghanbaja J., Belmonte T., Gusarov V.V. Cation Redistribution along the Spiral of Ni-Doped Phyllosil icate Nanoscrolls: Energy Modelling and STEM/EDS Study. Chem. Phys. Chem., 2019, 20, P. 1–9.
14. Kirichenko O.A., Shuvalova E.V., Redina, E.A. Low-temperature copper hydrosilicates: catalysts for reduction of aromatic nitro compounds with molecular hydrogen. Russ. Chem. Bull., 2019, 68, P. 2048–2052.
15. Hara T., Mascotto S., Weidmann C., Smarsly B.M. The effect of hydrothermal treatment on column performance for monolithic silica capillary columns. J. of Chromatography A, 2011, 1218, P. 3624–3635.
16. Krasilin A.A., Bodalyov I.S., Malkov A.A., Khrapova E.K., Maslennikova T.P., Malygin A.A. On an adsorption/photocatalytic performance of nanotubular Mg3Si2O5(OH)4/TiO2 composite. Nanosystems: Phys. Chem. Math., 2018, 9 (3), P. 410–416.
17. Krasilin A.A., Straumal E.A., Yurkova L.L., Khrapova E.K., Tomkovich M.V., Shunina I.G., Vasil’eva L.P., Lermontov S.A., Ivanov V.K. Sulfated Halloysite Nanoscrolls as Superacid Catalysts for Oligomerization of Hexene-1. Russ. J. Appl. Chem., 2019, 92, P. 1251–1257.
18. Sidorenko A.Yu., Kravtsova A.V., Aho A., Heinmaa I., W¨arna J., Pazniak H., Volcho K.P., Salakhutdinov N.F., Murzin D.Yu., Agabekov V.E. Highly selective Prins reaction over acid-modified halloysite nanotubes for synthesis of isopulegol-derived 2H-chromene compounds. J. of Catal ysis, 2019, 374, P. 360–377.
19. Thill A., Picot P., Bellon L. A mechanism for the sphere/tube shape transition of nanoparticles with an imogolite local structure (imogolite and allophane). Applied Clay Science, 2017, 141, P. 308–315.
20. Pigni`e M.-C., Shcherbakov V., Charpentier T., Moskura M., Carteret C., Denisov S., Mostafavi M., Thill A., Ca¨er S. Confined water radiolysis in aluminosilicate nanotubes: the importance of charge separation effects. Nanoscale, 2021, 13, P. 3092–3105.
21. Cavallaro G., Lazzara G., Milioto S., Parisi F., Sanzillo V. Modified Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid Phases. ACS Appl. Mater. Interfaces, 2014, 6, P. 606–612.
22. Krasilin A.A. Energy modeling of competition between tubular and platy morphologies of chrysotile and halloysite layers. Clays and Clay Miner als, 2020, 1, P. 1–12.
23. Krasilin A.A., Khrapova E.K. Effect of hydrothermal treatment conditions on formation of nickel hydrogermanate with platy morphology. Russ. J. Appl. Chem., 2017, 90, P. 22–27.
24. White R.D., Bavykin D.V., Walsh F.C. Spontaneous Scrolling of Kaolinite Nanosheets into Halloysite Nanotubes in an Aqueous Suspension in the Presence of GeO2. J. of Physical Chemistry, 2012, 116, P. 8824–8833.
25. Perbost R., Amouric M., Olives J. Influence of Cation Size on the Curvature of Serpentine Minerals: HRTEM-AEM Study and Elastic Theory. Clays Clay Miner., 2003, 51, P. 430–438.
26. Maslennikova T.P., Korytkova E.N., Pivovarova L.N. Hydrothermal synthesis of nanotube composition Al2Si2O5(OH)4 2H2O with halloysite structure. Physics and Chemistry of Glass, 2012, S6, P. 890–893.
27. Golubeva O.Yu, Alikina Y.A., Kalashnikova T.A. Influence of hydrothermal synthesis conditions on the morphology and sorption properties of porous aluminosilicates with kaolinite and halloysite structures. Applied Clay Science, 2020, 199, P. 1–12.
28. Mak´ oa ´ E., Kov´ acs A., Antal V., Krist´of T. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 ˚ A and its rearrangement upon peroxide treatment. Applied Clay Science, 2017, 146, P. 131–139.
29. Xiaoguang Li, Qinfu Liu, Hongfei Cheng, Sridhar Komarneni. High-yield production of mesoporous nanoscrolls from kaolinite by ultrasonic assisted exfoliation. Microporous and Mesoporous Materials, 2017, 241, P. 66–71.
30. Kloprogge J.T. Characterisation of Halloysite by Spectroscopy. Developm. Clay Sci., 2016, 7, P. 115–136.
31. Jiangyan Yuan, Jing Yang, Hongwen Ma, Shuangqing Su, Qianqian Chang, Sridhar Komarneni. Hydrothermal synthesis of nano-kaolinite from K-feldspar. Ceramics International, 2018, 44 (13), P. 15611–15617.
32. Tan D., Yuan P., Liu D., Du P. Chapter 8- Surface Modifications of Halloysite. Developm. Clay Sci., 2016, 7, P. 167–201.
33. Weng On Yah, Atsushi Takahara, Yuri M. Lvov. Selective Modification of Halloysite Lumen with Octadecylphosphonic Acid: New Inorganic Tubular Micelle. J. of the American Chemical Society, 2012, 134 (3), P. 1853–1859.
34. Li Y., Zhang Y., Zhang Y., Liu M., Zhang F., Wang L. Thermal behavior analysis of halloysite selected from Inner Mongolia Autonomous Region in China. J. Therm. Anal. Calorim., 2017, 129, P. 1333–1339.
35. Erzs´ebet Horv´ath, Ray L. Frost, ´ Eva Mak´ o, J´anos Krist´ of, Tam´ as Cseh. Thermal treatment of mechanochemically activated kaolinite. Thermochim ica Acta, 2003, 404 (1–2), P. 227–234.
36. G´abor M., T´oth M., Krist´ of J., Kom´aromi-Hiller G. Thermal Behavior and Decomposition of Intercalated Kaolinite. Clays Clay Miner., 1995, 43, P. 223–228.
37. Krasilin A.A., Danilovich D.P., Yudina E.B., Bruyere S., Ghanbaja J., Ivanov V.K. Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls. Applied Clay Science, 2019, 173, P. 1–11.
38. Joussein E., Petit S., Churchman J., Theng B., Righi D., Delvaux B. Halloysite clay minerals– a review. Clay Minerals, 2005, 40, P. 383–426.
Review
For citations:
Leonov N.A., Kozlov D.A., Kirilenko D.A., Bert N.A., Pelageikina A.O., Nechitailov A.A., Alikin M.B., Krasilin A.A. Formation of a 10 ˚A phase with halloysite structure under hydrothermal conditions with varying initial chemical composition. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):264-271. https://doi.org/10.17586/2220-8054-2023-14-2-264-271