Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Образование 10 Å фазы со структурой галлуазита в гидротермальных условиях при варьировании химической предыстории исходной композиции

https://doi.org/10.17586/2220-8054-2023-14-2-264-271

Аннотация

Мы изучили процесс получения наноструктурного галлуазита путем варьирования параметров для создания исходной композиции. Исходная композиция была синтезирована совместным гидролизом (C3H7O)3Al и (C2H5O)4Si в системе C6H14–NH3·H2O. Гидросиликат алюминия состава Al2Si2O5(OH)4  был синтезирован в гидротермальных условиях (220°C, 2 МПа, 96 ч). Были получены частицы пластинчатой морфологии со средней длиной 100-200 нм и толщиной 60 нм. Анализ образцов методом порошковой дифрактометрии выявил наличие двух фаз: пластинчатого каолинита, а другой - образование галлуазитоподобной фазы. Исследования синтезированных образцов методом ИК-спектроскопии и термического анализа выявили присутствие органически модифицированного гидросиликата с фазовым переходом около 412 °С. Полученная фаза перспективна для изучения процессов адсорбции и дальнейшей эксфолиации.

Об авторах

Н. А. Леонов
Ioffe Institute
Россия


Д. А. Козлов
Lomonosov Moscow State University; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Россия


Д. А. Кириленко
Ioffe Institute
Россия


Н. А. Берт
Ioffe Institute
Россия


А. О. Пелагейкина
Ioffe Institute
Россия


А. А. Нечитайлов
Ioffe Institute
Россия


М. Б. Аликин
St. Petersburg State Technological University (Technical University)
Россия


А. А. Красилин
Ioffe Institute
Россия


Список литературы

1. Pimneva L.A. Study of the adsorption of manganese ions (II) in natural kaolinite. Modern high technologies, 2017, 7, P. 61–65.

2. Minyukova T.P., Shtertser N.V., Khassin A.A., Plyasova L.M., Kustova G.N., Zaikovskii V.I., Baronskaya N.A., Kuznetsova A.V., Davydova L.P., Yur’eva T.M., Shvedenkov Yu.G., Van Den Heuvel J.C. Evolution of Cu–Zn–Si oxide catalysts in the course of reduction and reoxidation as studied by in situ x-ray diffraction analysis, transmission electron microscopy, and magnetic susceptibility methods. Kinetics and Catalysis, 2008, 49 (6), P. 821–830.

3. Bikbau M.Ya. Nano cement morphological peculiarities, structure properties and concrete on their base. Concrete technology, 2014, 4, P. 38–44.

4. Koji Wada, Naganori Yoshinaga. The structure of “imogolite”. American Mineralogist, 1969, 52 (1–2), P. 50–71.

5. Levin A., Khrapova E., Kozlov D., Krasilin A., Gusarov V. Structure refinement, microstrains and crystallite sizes of Mg–Ni-phyllosilicate nano scroll powders. J. Appl. Cryst., 2022, 55, P. 484–502.

6. Bates T.F., Sand L.B., Mink J.F. Tubular Crystals of Chrysotile Asbestos. Science, 1950, 111, P. 512–513.

7. Bates T.F., Hildebrand F.A., Swineford A. Morphology and structure of endellite and halloysite. American Mineralogist, 1950, 35 (7–8), P. 463 484.

8. Lukuttsova N.P., Golovin S.N. Aggregative stability of aqueous suspensions of halloysite nanotubes. Construction materials, 2018, 1 (2), P. 4–10.

9. Arsent’ev M.Y., Golubeva O.Y. Comparative Study of Internal Mechanical Stresses in the Structures of Montmorillonite and Halloysite. Glass Phys. Chem., 2020, 46, P. 598–604.

10. Szczepanik B., Slomkiewicz P., Garnuszek M., Czech K., Banas D., Kubala-Kukus A., Stabrawa I. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies. J. of Molecular Structure, 2015, 1084, P. 16–22.

11. Krasilin A.A., Khrapova E.K., Maslennikova T.P. Cation Doping Approach for Nanotubular Hydrosilicates Curvature Control and Related Appli cations. Crystals, 2020, 10, 654.

12. Parfitt R.L., Furkert R. J., Henmi T. Identification and Structure of Two Types of Allophane from Volcanic Ash Soils and Tephra. Clays and Clay Minerals, 1980, 28, P. 328–334.

13. Krasilin A.A., Khrapova E.K., Nomin´e A., Ghanbaja J., Belmonte T., Gusarov V.V. Cation Redistribution along the Spiral of Ni-Doped Phyllosil icate Nanoscrolls: Energy Modelling and STEM/EDS Study. Chem. Phys. Chem., 2019, 20, P. 1–9.

14. Kirichenko O.A., Shuvalova E.V., Redina, E.A. Low-temperature copper hydrosilicates: catalysts for reduction of aromatic nitro compounds with molecular hydrogen. Russ. Chem. Bull., 2019, 68, P. 2048–2052.

15. Hara T., Mascotto S., Weidmann C., Smarsly B.M. The effect of hydrothermal treatment on column performance for monolithic silica capillary columns. J. of Chromatography A, 2011, 1218, P. 3624–3635.

16. Krasilin A.A., Bodalyov I.S., Malkov A.A., Khrapova E.K., Maslennikova T.P., Malygin A.A. On an adsorption/photocatalytic performance of nanotubular Mg3Si2O5(OH)4/TiO2 composite. Nanosystems: Phys. Chem. Math., 2018, 9 (3), P. 410–416.

17. Krasilin A.A., Straumal E.A., Yurkova L.L., Khrapova E.K., Tomkovich M.V., Shunina I.G., Vasil’eva L.P., Lermontov S.A., Ivanov V.K. Sulfated Halloysite Nanoscrolls as Superacid Catalysts for Oligomerization of Hexene-1. Russ. J. Appl. Chem., 2019, 92, P. 1251–1257.

18. Sidorenko A.Yu., Kravtsova A.V., Aho A., Heinmaa I., W¨arna J., Pazniak H., Volcho K.P., Salakhutdinov N.F., Murzin D.Yu., Agabekov V.E. Highly selective Prins reaction over acid-modified halloysite nanotubes for synthesis of isopulegol-derived 2H-chromene compounds. J. of Catal ysis, 2019, 374, P. 360–377.

19. Thill A., Picot P., Bellon L. A mechanism for the sphere/tube shape transition of nanoparticles with an imogolite local structure (imogolite and allophane). Applied Clay Science, 2017, 141, P. 308–315.

20. Pigni`e M.-C., Shcherbakov V., Charpentier T., Moskura M., Carteret C., Denisov S., Mostafavi M., Thill A., Ca¨er S. Confined water radiolysis in aluminosilicate nanotubes: the importance of charge separation effects. Nanoscale, 2021, 13, P. 3092–3105.

21. Cavallaro G., Lazzara G., Milioto S., Parisi F., Sanzillo V. Modified Halloysite Nanotubes: Nanoarchitectures for Enhancing the Capture of Oils from Vapor and Liquid Phases. ACS Appl. Mater. Interfaces, 2014, 6, P. 606–612.

22. Krasilin A.A. Energy modeling of competition between tubular and platy morphologies of chrysotile and halloysite layers. Clays and Clay Miner als, 2020, 1, P. 1–12.

23. Krasilin A.A., Khrapova E.K. Effect of hydrothermal treatment conditions on formation of nickel hydrogermanate with platy morphology. Russ. J. Appl. Chem., 2017, 90, P. 22–27.

24. White R.D., Bavykin D.V., Walsh F.C. Spontaneous Scrolling of Kaolinite Nanosheets into Halloysite Nanotubes in an Aqueous Suspension in the Presence of GeO2. J. of Physical Chemistry, 2012, 116, P. 8824–8833.

25. Perbost R., Amouric M., Olives J. Influence of Cation Size on the Curvature of Serpentine Minerals: HRTEM-AEM Study and Elastic Theory. Clays Clay Miner., 2003, 51, P. 430–438.

26. Maslennikova T.P., Korytkova E.N., Pivovarova L.N. Hydrothermal synthesis of nanotube composition Al2Si2O5(OH)4 2H2O with halloysite structure. Physics and Chemistry of Glass, 2012, S6, P. 890–893.

27. Golubeva O.Yu, Alikina Y.A., Kalashnikova T.A. Influence of hydrothermal synthesis conditions on the morphology and sorption properties of porous aluminosilicates with kaolinite and halloysite structures. Applied Clay Science, 2020, 199, P. 1–12.

28. Mak´ oa ´ E., Kov´ acs A., Antal V., Krist´of T. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 ˚ A and its rearrangement upon peroxide treatment. Applied Clay Science, 2017, 146, P. 131–139.

29. Xiaoguang Li, Qinfu Liu, Hongfei Cheng, Sridhar Komarneni. High-yield production of mesoporous nanoscrolls from kaolinite by ultrasonic assisted exfoliation. Microporous and Mesoporous Materials, 2017, 241, P. 66–71.

30. Kloprogge J.T. Characterisation of Halloysite by Spectroscopy. Developm. Clay Sci., 2016, 7, P. 115–136.

31. Jiangyan Yuan, Jing Yang, Hongwen Ma, Shuangqing Su, Qianqian Chang, Sridhar Komarneni. Hydrothermal synthesis of nano-kaolinite from K-feldspar. Ceramics International, 2018, 44 (13), P. 15611–15617.

32. Tan D., Yuan P., Liu D., Du P. Chapter 8- Surface Modifications of Halloysite. Developm. Clay Sci., 2016, 7, P. 167–201.

33. Weng On Yah, Atsushi Takahara, Yuri M. Lvov. Selective Modification of Halloysite Lumen with Octadecylphosphonic Acid: New Inorganic Tubular Micelle. J. of the American Chemical Society, 2012, 134 (3), P. 1853–1859.

34. Li Y., Zhang Y., Zhang Y., Liu M., Zhang F., Wang L. Thermal behavior analysis of halloysite selected from Inner Mongolia Autonomous Region in China. J. Therm. Anal. Calorim., 2017, 129, P. 1333–1339.

35. Erzs´ebet Horv´ath, Ray L. Frost, ´ Eva Mak´ o, J´anos Krist´ of, Tam´ as Cseh. Thermal treatment of mechanochemically activated kaolinite. Thermochim ica Acta, 2003, 404 (1–2), P. 227–234.

36. G´abor M., T´oth M., Krist´ of J., Kom´aromi-Hiller G. Thermal Behavior and Decomposition of Intercalated Kaolinite. Clays Clay Miner., 1995, 43, P. 223–228.

37. Krasilin A.A., Danilovich D.P., Yudina E.B., Bruyere S., Ghanbaja J., Ivanov V.K. Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls. Applied Clay Science, 2019, 173, P. 1–11.

38. Joussein E., Petit S., Churchman J., Theng B., Righi D., Delvaux B. Halloysite clay minerals– a review. Clay Minerals, 2005, 40, P. 383–426.


Рецензия

Для цитирования:


Леонов Н.А., Козлов Д.А., Кириленко Д.А., Берт Н.А., Пелагейкина А.О., Нечитайлов А.А., Аликин М.Б., Красилин А.А. Образование 10 Å фазы со структурой галлуазита в гидротермальных условиях при варьировании химической предыстории исходной композиции. Наносистемы: физика, химия, математика. 2023;14(2):264-271. https://doi.org/10.17586/2220-8054-2023-14-2-264-271

For citation:


Leonov N.A., Kozlov D.A., Kirilenko D.A., Bert N.A., Pelageikina A.O., Nechitailov A.A., Alikin M.B., Krasilin A.A. Formation of a 10 ˚A phase with halloysite structure under hydrothermal conditions with varying initial chemical composition. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):264-271. https://doi.org/10.17586/2220-8054-2023-14-2-264-271

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)