Наночастицы диоксида церия модулируют оксидативный метаболизм нейтрофилов при облучении крови импульсным широкополосным источником УФ-излучения
https://doi.org/10.17586/2220-8054-2023-14-6-644-651
Аннотация
Проведен анализ влияния наночастиц СеО2 на оксидативную активность нейтрофилов при облучении импульсным широкополосным источником УФ-излучения (210 мДж/см2). Оценены эффекты цитрат-стабилизированного золя СеО2 на спонтанную и стимулированную с помощью форбол-12-миристат-13-ацетата (ФМА) и N-формилметионил-лейцил-фенилаланина (фМЛФ) люминол-зависимую хемилюминесценцию нейтрофилов. Показано активирующее влияние наночастиц СеО2 на спонтанную хемилюминесценцию и супрессорное действие на стимулированную хемилюминесценцию нейтрофилов крови практически здоровых доноров, при этом наиболее выраженный активирующий эффект нанодисперсный СеО2 проявляет в отношении образца крови с изначально высокой радикал-продуцирующей активностью клеток. При УФ-облучении крови в дозе 210 мДж/см2 наночастицы СеО2 усиливают как спонтанную, так и стимулированную радикал-продуцирующую функцию нейтрофилов. Супрессорное и активирующее действие цитратного золя диоксида церия может быть обусловлено антиоксидантной активностью наночастиц СеО2 по отношению к гипохлорит-ионам и прооксидантной активностью по отношению к пероксиду водорода, соответственно
Об авторах
М. М. СозаруковаРоссия
П. А. Чиликина
Россия
Д. О. Новиков
Россия
Е. В. Проскурнина
Россия
А. Е. Баранчиков
Россия
В. К. Иванов
Россия
Список литературы
1. Singh S. Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases, 2016, 11 (4), 04B202.
2. Jiang D., Ni D., et al. Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev., 2019, 48 (14), P. 3683–3704.
3. Singh K.R., Nayak V., et al. Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Adv., 2020, 10 (45), P. 27194–27214.
4. Filippova A.D., Sozarukova M.M., et al. Peroxidase-like activity of CeO2 nanozymes: particle size and chemical environment matter. Molecules, 2023, 28 (9), 3811.
5. Ivanov V.K., Polezhaeva O.S., Tret’yakov Y.D. Nanocrystalline ceria: synthesis, structure-sensitive properties, and promising applications. Russ. J. Gen. Chem., 2010, 80 (3), P. 604–617.
6. Shcherbakov A.B., Reukov V.V., et. al. CeO2 nanoparticle-containing polymers for biomedical applications: A review. Polymers, 2021, 13 (6), 924.
7. Popov A.L., Shcherbakov A.B., et. al. Cerium dioxide nanoparticles as third-generation enzymes (nanozymes). Nanosyst: Phys, Chem, Math., 2017, 8 (6), P. 760–781.
8. Korsvik C., Patil S., et al. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. (Camb.), 2007, 10, P. 1056–1058.
9. Heckert E.G., Karakoti A., et al. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, 29 (18), P. 2705– 2709.
10. Baldim V., Bedioui F., et al. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale, 2018, 10 (15), P. 6971–6980.
11. Sozarukova M.M., Shestakova M.A., et al. Quantification of free radical scavenging properties and SOD-like activity of cerium dioxide nanoparticles in biochemical models. Rus. J. Inorg. Chem., 2020, 65, P. 597–605.
12. Pirmohamed T., Dowding J.M., et al., Nanoceria exhibit redox state-dependent catalase mimetic activity. ChemComm., 2010, 46 (16), P. 2736– 2738.
13. Singh R., Singh S. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles. Colloids Surf. B Biointerfaces, 2015, 132, P. 78–84.
14. Singh R., Singh S. Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids Surf. B Biointerfaces, 2019, 175, P. 625–635.
15. Jiao X., Song H., et al., Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods, 2012, 4 (10), P. 3261–3267.
16. Ansari A.A., Solanki P.R., Malhotra B. Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. J. Biotechnol., 2009, 142 (2), P. 179–184.
17. Sozarukova M.M., Proskurnina E.V., Ivanov V.K. Prooxidant potential of CeO2 nanoparticles towards hydrogen peroxide. Nanosyst: Phys, Chem, Math., 2021, 12 (3), P. 283–290.
18. Filippova A.D, Sozarukova M.M., et al. Low-Temperature Inactivation of Enzyme-like Activity of Nanocrystalline CeO2 Sols. Rus. J. Inorg. Chem., 2022, 67 (12), P. 1948–1955.
19. Liu H., Liu J. Self-limited Phosphatase-mimicking CeO2 Nanozymes. Chem.Nano.Mat, 2020, 6 (6), P. 947–952.
20. Khulbe K., Karmakar K., et al. Nanoceria-based phospholipase-mimetic cell membrane disruptive antibiofilm agents. ACS Appl. Bio Mater., 2020, 3 (7), P. 4316–4328.
21. Tian Z., Yao T., et al. Photolyase-like catalytic behavior of CeO2. Nano Lett., 2019, 19 (11), P. 8270–8277.
22. Liu D., Yang P., et al. Study on performance of mimic uricase and its application in enzyme-free analysis. Anal. Bioanal. Chem., 2021, 413 (26), P. 6571–6580.
23. Celardo I., Pedersen J.Z., et al. Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011, 3 (4), P. 1411–1420.
24. Ciccarese F., Raimondi V., et al. Nanoparticles as tools to target redox homeostasis in cancer cells. Antioxidants, 2020, 9 (3), 211.
25. Sun W., Yang Y. Recent advances in redox-responsive nanoparticles for combined cancer therapy. Nanoscale Adv., 2022, 4 (17), P. 3504–3516.
26. Hamblin M.R. Ultraviolet irradiation of blood: “the cure that time forgot”? Adv. Exp. Med. Biol., 2017, 996, P. 295–309.
27. Ahmad S.I. Ultraviolet light in human health, diseases and environment. Springer International Publishing, Cham, 2017, 365 p.
28. Heilingloh C.S., Aufderhorst U.W., et al. Susceptibility of SARS-CoV-2 to UV irradiation. Am. J. Infect. Control, 2020. 48 (10), P. 1273–1275.
29. Hessling M., H¨ones K., et al. Ultraviolet irradiation doses for coronavirus inactivation–review and analysis of coronavirus photoinactivation studies. GMS Hyg. Infect. Control, 2020, 15.
30. Boretti A., Banik B., Castelletto S. Use of ultraviolet blood irradiation against viral infections. Clin. Rev. Allergy Immunol., 2021, 60, P. 259–270.
31. Peloi K.E., Ratti B.A., et al. Engineered nanoceria modulate neutrophil oxidative response to low doses of UV-B radiation through the inhibition of reactive oxygen species production. J. Biomed. Mater. Res. A, 2021, 109 (12), P. 2570–2579.
32. Lin M.-H., Lin C.-F., et al. The interplay between nanoparticles and neutrophils. J. Biomed. Nanotechnol., 2018, 14 (1), P. 66–85.
33. Nauseef W.M., Borregaard N. Neutrophils at work. Nat. Immunol., 2014, 15 (7), P. 602–611.
34. Mayadas T.N., Cullere X., Lowell C.A. The multifaceted functions of neutrophils. Annu. Rev. Pathol., 2014, 9, P. 181–218.
35. Knaapen A.M., G¨ung¨or N., et al. Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis, 2006, 21 (4), P. 225–236.
36. Deniset J.F., Kubes P. Recent advances in understanding neutrophils. F1000Res., 2016, 5, 2912.
37. Boni B.O.O., Lamboni L. Immunomodulation and cellular response to biomaterials: the overriding role of neutrophils in healing. Mater. Horiz., 2019, 6 (6), P. 1122–1137.
38. Nguyen G.T., Green E.R., Mecsas J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front. Cell. Infect. Microbiol., 2017, 7, 373.
39. Chakraborty A., Boer J.C., et al. Amino acid functionalized inorganic nanoparticles as cutting-edge therapeutic and diagnostic agents. Bioconjug. Chem., 2017, 29 (3), P. 657–671.
40. Sur S., Rathore A., et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct. Nano- Objects, 2019, 20, 100397.
41. Zhang W., Bai M., et al. Safety and efficacy of regional citrate anticoagulation for continuous renal replacement therapy in liver failure patients: a systematic review and meta-analysis. Crit. Care, 2019, 23 (1), P. 1–11.
42. Shcherbakov A.B., Teplonogova M.A. et al. Facile method for fabrication of surfactant-free concentrated CeO2 sols. Mater. Res. Express, 2017, 4 (5), 055008.
43. Obraztsov I.V., Godkov M.A., et al. An evaluation of neutrophil function in whole blood samples with two-step stimulation: a new approach to chemiluminescence analysis. Rus. J. Immun., 2015, 9, P. 418–425.
44. Allen R.C. Role of oxygen in phagocyte microbicidal action. Environ. Health Perspect., 1994, 102 (Suppl 10), P. 201–208.
45. Tarafdar A., Pula G. The role of NADPH oxidases and oxidative stress in neurodegenerative disorders. Int. J. Mol. Sci., 2018, 19 (12), 3824.
46. Darroudi M., Sarani, M. et al. Nanoceria: Gum mediated synthesis and in vitro viability assay. Ceram. Int., 2014, 40 (2), P. 2863–2868.
47. Li C., Zhao W., et al. Cytotoxicity of ultrafine monodispersed nanoceria on human gastric cancer cells. J. Biomed. Nanotechnol., 2014, 10 (7), P. 1231–1241.
48. Shokrzadeh M., Abdi H., et al. Nanoceria attenuated high glucose-induced oxidative damage in HepG2 cells. Cell J., 2016, 18 (1), 97.
49. Ivanov V.K., Usatenko A.V., Shcherbakov A.B. Antioxidant activity of nanocrystalline ceria to anthocyanins. Russ. J. Inorg. Chem., 2009, 54, 1522.
50. Ivanov V.K., Shcherbakov A.B., et al. Inactivation of the nitroxyl radical by ceria nanoparticles. Dokl. Chem., 2010, 430, P. 43–46.
51. Zholobak N.M., Shcherbakov A.B., et al. Direct monitoring of the interaction between ROS and cerium dioxide nanoparticles in living cells. RSC Adv., 2014, 4, P. 51703–51710.
52. Eriksson P., Tal A.A., et al. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci. Rep., 2018, 8 (1), P. 6999.
53. Pulido-Reyes G., Das S., et al. Hypochlorite scavenging activity of cerium oxide nanoparticles. RSC Adv., 2016, 6 (67), P. 62911–62915.
54. Brestel E.P. Co-oxidation of luminol by hypochlorite and hydrogen peroxide implications for neutrophil chemiluminescence. Biochem. Biophys. Res. Commun., 1985, 126 (1), P. 482–488.
55. Edwards, S. Luminol-and lucigenin-dependent chemiluminescence of neutrophils: role of degranulation. J. Clin. Lab. Immunol., 1987, 22 (1), P. 35–39.
56. Gorudko I., Mikhalchik E., Sokolov A., Grigorieva D., Kostevich V., Vasilyev V., Cherenkevich S., Panasenko O. The production of reactive oxygen and halogen species by neutrophils in response to monomeric forms of myeloperoxidase. Biophysics, 2017, 62, P. 919–925.
57. Bedouh`ene S., Moulti-Mati F., et al. Luminol-amplified chemiluminescence detects mainly superoxide anion produced by human neutrophils. Am. J. Blood Res., 2017, 7 (4), 41.
58. Seminko V., Maksimchuk P., et al. Catalytic Decomposition of Hypochlorite Anions by Ceria Nanoparticles Visualized by Spectroscopic Techniques. J. Phys. Chem. C, 2019, 123 (33), P. 20675–20681.
59. Adebayo O.A., Akinloye O., Adaramoye O.A. Cerium oxide nanoparticles attenuate oxidative stress and inflammation in the liver of diethylnitrosamine-treated mice. Biol. Trace Elem. Res., 2020, 193, P. 214–225.
60. Peloi K.E., Lancheros C.A.C., et al. Antioxidative photochemoprotector effects of cerium oxide nanoparticles on UVB irradiated fibroblast cells. Colloids Surf. B Biointerfaces, 2020, 191, P. 111013.
Рецензия
Для цитирования:
Созарукова М.М., Чиликина П.А., Новиков Д.О., Проскурнина Е.В., Баранчиков А.Е., Иванов В.К. Наночастицы диоксида церия модулируют оксидативный метаболизм нейтрофилов при облучении крови импульсным широкополосным источником УФ-излучения. Наносистемы: физика, химия, математика. 2023;14(6):644-651. https://doi.org/10.17586/2220-8054-2023-14-6-644-651
For citation:
Sozarukova M.M., Chilikina P.A., Novikov D.O., Proskurnina E.V., Baranchikov A.E., Ivanov V.K. Cerium dioxide nanoparticles modulate the oxidative metabolism of neutrophils upon blood irradiation with a pulsed broadband UV source. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(6):644-651. https://doi.org/10.17586/2220-8054-2023-14-6-644-651