Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Features of Ca1-xYxF2+x solid solution heat capacity behavior: diffuse phase transition

https://doi.org/10.17586/2220-8054-2023-14-2-279-285

Abstract

A series of single crystals of a Ca1-xYxF2+x solid solution with a fluorite structure containing 1 19 mol.% YF3 (x =0.01–0.19) has been grown. Thermal analyzer STA 449 F3 Jupiter in DSC mode recorded the temperature dependences of the heat capacity Cp(T) in the temperature range from the room temperature to 1300 C. Adiffuse phase transition in the solid state for concentrations x =0.01–0.03 is fixed as an anomaly on the Cp(T) curves with a maximum at 1150 50 C. With an increase in the content of YF3 (x =0.05–0.19), a very wide structured peak is recorded in the range of 650–1100 C. The heat capacity anomaly is associated with the reversible rearrangement of defect nanoclusters, which affects the change in the anion sublattice.

About the Authors

A. A. Alexandrov
Prokhorov General Physics Institute of the Russian Academy of Sciences; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Alexander A. Alexandrov

Vavilova str., 38, Moscow 119991

Leninskii pr. 31, Moscow, 119991



A. D. Rezaeva
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Anna D. Rezaeva

Vavilova str., 38, Moscow 119991



V. A. Konyushkin
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Vasilii A. Konyushkin

Vavilova str., 38, Moscow 119991



A. N. Nakladov
ProkhorovGeneralPhysics Institute of the Russian Academy of Sciences
Russian Federation

Andrey N. Nakladov

Vavilova str., 38, Moscow 119991



S. V. Kuznetsov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Sergey V. Kuznetsov

Vavilova str., 38, Moscow 119991



P. P. Fedorov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

Pavel P. Fedorov

Vavilova str., 38, Moscow 119991



References

1. Naylor B.F. Heat contents at high temperatures of magnesium and calcium fluorides. J. Amer. Chem. Soc., 1945, 67, P. 150–152.

2. Bredig M.A. The order-disorder (l) transition in UO2 and other solids of the fluorite type of structure. Colloq. Inter. CNRS, 1972, 205, P. 183–197.

3. Catlow C.R.A., Comings J.D., Germano F.A., Harley R.T. Hayes W. Brillouin scattering and theoretical studies of high-temperature disorder in f luorite crystals. J. Phys. C: Solid State Phys., 1978, 11, P. 3197–3212.

4. Schr¨ oter W., N¨olting J. Specific heats of crystals with the fluorite structure. J. Phys. Coll. (Paris), 1980, 41, P. 6–20.

5. Oberschmidt J. Simple thermodynamic model for the specific-heat anomaly and several other properties of crystals with the fluorite structure. Phys. Rev. B, 1981, 23, P. 5038–5047.

6. Chadwick A.V. High-temperature transport in fluorites. Solis State Ionics, 1983, 8, P. 209–220.

7. Hutchings M.T., Clausen K., Dickens M.H., Hayes W., Kjems J.K., Schnabel P.G., Smith C. Investigation of thermally induced anion disorder in f luorites using neutron scattering techniques. J. Phys. C, 1984, 17, P. 3903–3940.

8. Roberts R.B., White G.K. Thermal expansion of fluorites at high temperatures. J. Phys. C, 1986, 19, P. 7167–7172.

9. Hull S. Superionics: crystal structures and conduction processes. Rep. Prog. Phys. 2004, 67, P. 1233–1314.

10. Vlieg E., den Hartog H.W. The superionic phase transition of fluorite-type crystals. J. Phys. Chem. Solids, 1986, 47(5), P. 521–528.

11. Allnatt A.R., Chadwick A.V., Jacobs P.W.M. A model for the onset of fast-ion conduction in fluorites. Proc. R. Soc. London A, 1987, 410, P. 385 408.

12. Schmalzl K., Strauch D., Schober H. Lattice-dynamical and groud-state properties of CaF2 studied by inelastic neutron scattering and density functional methods. Phys. Rev. B, 2003, 68, P. 144301–144313.

13. Eapen J., Annamareddy A. Entropic crossovers in superionic fluorites from specific heat. Ionics, 2017, 23, P. 1043–1047.

14. Fossati P.C.M., Chartier A., Boulle A. Structural aspects of the superionic transition in AX2 compounds with the fluorite structure. Frontiers in Chemistry, 2021, 9, # 723507 (19 pp.)

15. Gilmore R. Catastrophe Theory for Scientists and Engineers. New York, Dover, 1993.

16. Fedorov P.P., Sobolev B.P. Phase diagrams of the CaF2-(Y,Ln) F3 systems. II. A discussion. J. Less-Common Metals, 1979, 63, P. 31–44.

17. Svantner M., Mariani E., Fedorov P.P., Sobolev B.P. Solid solution with fluorite structure in the CaF2–LaF3 system. Kristall und Technik-Crystal Research and Technology, 1979, 14(3), P. 365–369.

18. Fedorov P.P., Alexandrov A.A., Voronov V.V., Mayakova M.N., Baranchikov A.E., Ivanov V.K. Low-temperature phase formation in the SrF2 LaF3 system. J. Amer. Ceram. Soc., 2021, 104(6), P. 2836–2848.

19. Fedorov P.P., Maykova M.N., Kuznetsov S.V., Maslov V.A., Sorokin N.I., Baranchikov A.E., Ivanov V.K., Pynenkov A.A., Uslamina M.A., Nishchev K.N. Phase Diagram of the NaF–CaF2 System and the Electrical Conductivity of a CaF2-Based Solid Solution. Russ. J. Inorg. Chem., 2016, 61(11), P. 1472–1478.

20. Catlow C.R.A., Comins J.D., Germano F.A., Harley R.T. Hayes W., Owen I.B. Studies of effects of trivalent impurity ions on the transition to the superionic state of fluorites. J. Phys. C: Solid State Phys., 1981, 14, P. 329–335.

21. Andersen N.H., Clausen K., Kjems J.K. Heavily doped M1 xUxF2+2x fluorites studied by quasielastic neutron scattering (M = Ba) and specific heat measurements (M = Pb). Solid State Ionics, 1983, 9–10, P. 543–548.

22. Ouwerkerk M., Kelder E.M., Schoonman J. Conductivity and specific heat of fluorites M1 xUxF2+2x (M = Ca, Sr, Ba and Pb). Solid State Ionics, 1983, 9–10, P. 531–536.

23. Bokii G.B. Kristallokhimiya (Crystal Chemistry). M.: Nauka, 1971. (in Russian)

24. Filatov S.K., Krivovichev S.V., Bubnova R.S. Obschaya kristallokhimiya (General Crystal Chemistry). S.-Peterburg: Izd. SPbGU, 2018. (in Russian)

25. Seiranian K.B., Fedorov P.P., Garashina L.S., Molev G.V., Karelin V.V., Sobolev B.P. Phase diagram of the system CaF2–YF3. J. Crystal Growth, 1974, 26(1), P. 61–64.

26. Fedorov P.P., Izotova O.E., Alexandrov V.B., Sobolev B.P. New phases with fluorite-derived structure in CaF2–(Y, Ln)F3 systems. J. Solid State Chem., 1974, 9(4), P. 368–374.

27. Gettmann W., Greis O. Uber fluorit- und tysonitverwandte ordnungsphasen im system CaF2–YF3. J. Solid State Chem., 1978, 26(3), P. 255–263.

28. Greis O., Haschke J.M. Rare Earth Fluorides. Handbook on the Physics and Chemistry of Rare Earth. Ed. K.A. Gscheidner & L. Eyring. Amster dam, New York, Oxford. 1982, 5, Ch. 45, P. 387–460.

29. Sobolev B.P., Fedorov P.P. Phase diagramms of the CaF2–(Y,Ln)F3 systems. I. Experimental. J. Less-Common Metals, 1978, 60, P. 33–46.

30. Fedorov P.P. Third law of thermodynamics as applied to phase diagrams. Rus. J. Inorg. Chem., 2010, 55(11), P. 1722–1739.

31. Fedorov P.P., Chernova E.V. Interactions of Yttrium and Lanthanum Fluorides with Other Fluorides. J. Fluorine Chem., 2022, 263, #110031 (9 pp.).

32. Fedorov P.P. Investigation of phase diagrams of the CaF2-(Y,Ln)F3 systems and polymorphism of rare earth trifluorides. Thesis. M.: 1977. (in Russian)

33. Sobolev B.P. The Rare Earth Trifluorides. P.2. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals. Barcelona, Institut d’Estudis Catalans, 2001.

34. Kuznetsov S.V., Fedorov P.P. Morphological Stability of Solid-Liquid Interface during Melt Crystallization of Solid Solutions M1 xRxF2+x. Inorg. Mater., 2008, 44(13), P. 1434–1458. (Supplement).

35. Fedorov P.P. Association of point defects in non stoichiometric M1 xRxF2+x fluorite-type solid solutions. Butll. Soc. Cat. Cien., 1991, 12(2), P. 349–381.

36. Osiko V.V., Prokhorov A.M. Investigation of the structure of crystals with an admixture of rare earth elements by spectroscopic methods. In: Problems of modern crystallography. M.: Nauka, 1975, P. 280–301.

37. Cheetham A.K., Fender B.E.F., Steele D., Taylor R.I., Willis B.T.M. Defect structure of fluorite compounds containing excess anions. Solid State Comm., 1970, 8, P. 171–173.

38. Cheetham A.K., Fender B.E.F., Cooper M.J. Defect structure of calcium fluoride containing excess anions: Bragg scattering. J. Phys. C.: Solid State Phys., 1971, 4, P. 3107–3121.

39. Allnatt A.R., Yuen P.S. Defect interactions in ionic fluorite structures: Pair clusters in CaF2 doped by YF3. J. Phys. C.: Solid State Phys., 1975, 8, P. 2199–2212.

40. Jacobs P.W.M., Ong S.H. Studies of defect clustering in CaF2:Y3+ by ionic conductivity and thermal depolarization. J. Phys. Chem. Sol., 1980, 41, P. 431–436.

41. Laval J.P., Frit B. Defect structure of anion-excess fluorite-related Ca1 xYxF2+x solid solutions J. Solid State Chem., 1983, 49, P. 237–246.

42. Catlow C.R.A., Chadwick A.V., Corish J., Moroney L.M., O’Reilly A.N. Defect structure of doped CaF2 at high temperatures. Phys. Rev. B, 1989, 39(3), P. 1897–1906.

43. Hofmann M., Hull S., Mclntyre G.J., Wilson C.C. A neutron diffraction study of the superionic transition in (Ca1 xYx)F2+x. J. Phys.: Condens. Matter., 1997, 9, P. 845–857.

44. Wang F., Grey C.P. Probing the defect structure of anion-excess Ca1 xYxF2+x (x =0.03–0.32) with high-resolution 19F magic-angle spinning nuclear magnetic resonance spectroscopy. Chem. Mater., 1998, 10, P. 3081–3091.

45. Bevan D.J.M., Greis O., Strahle J. A new structural principle in anion-excess fluorite-related superlattices. Acta Cryst., 1980, 36(6), P. 889–890.

46. Bendall P.J., Catlow C.R.A., Corish J., Jacobs P.W.M. Jacobs. Defect aggregation in anion-excess fluorites. II. Clusters containing more than two impurity atoms. J. Solid State Chem., 1984, 51, P. 159–169.

47. Kazanskii S.A., Ryskin A.I., Nikiforov A.E., Zaharov A.Yu., Ougrumov M.Yu., Shakurov G.S. EPR spectra and crystal field of hexamer rare-earth clusters in fluorites. Phys. Rev. B, 2005, 72, #014127 (11 pp).

48. Bagdasarov Kh. S., Voronko Yu.K., Kaminskii A.A., Krotova L.V., Osiko V.V. Modification of the optical properties of CaF2 TR3+ crystals by yttrium impurities. Phys. stat. sol., 1965, 12, P. 905–912.

49. Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. Specific features of ionic transport in nonstoichiometric fluorite-type Ca1 xRxF2+x (R = La-Lu, Y, Sc) phases. Solid State Ionics, 1990, 37, P. 125–137.

50. Sobolev B.P., Sorokin N.I., Bolotina N.B. Nonstoichiometric single crystals M1 xRxF2+x and R1 yMyF3 y (M = Ca, Sr, Ba, R– rare earth elements) as fluorine-ionic conductive solid electrolytes. In: Photonic and electronic properties of fluoride materials. Ed. A. Tressaud, K. Poep pelmeier. Amsterdam: Elsevier, 2016, P. 465–491.


Review

For citations:


Alexandrov A.A., Rezaeva A.D., Konyushkin V.A., Nakladov A.N., Kuznetsov S.V., Fedorov P.P. Features of Ca1-xYxF2+x solid solution heat capacity behavior: diffuse phase transition. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(2):279-285. https://doi.org/10.17586/2220-8054-2023-14-2-279-285

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)