Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Slow zinc release from carboxymethylcellulose gels filled with humic zinc oxide nanocomposites

https://doi.org/10.17586/2220-8054-2023-14-6-652-659

Abstract

The study is focused on characterization of humic zinc oxide nanocomposites and their potential application in wound healing as antibacterial agent. Zinc oxide nanoparticles were synthesized with varying concentrations of humic substances (HS) and analyzed using PXRD, TEM, SEM and UV-Vis techniques. The nanoparticle sizes based on the PXRD data decreased ranged from 50 to 15 nm along with an increase in humic ligand concentration. TEM images revealed that the star-shaped aggregates of 200–500 nm ZnO particles were formed in the absence of HS, whereas the presence of humic ligands led to shapeless smaller particles ranging from 20 to 200 nm. UV-Vis spectra showed increasing of zinc oxide band gap caused with an rise of HS concentration. The band gap of ZnO nanoparticles increased from 3.19 eV to 3.40 eV as the concentration of HS increased up to 15 g/L. The synthesized ZnO-HS nanocomposites were used for filling in the hydrogels of carboxymethylcellulose (CMC). The release studies of zinc ions from the gel into different buffers were conducted to imitate wound conditions. The measurements of Zn concentrations over time in buffer showed a gradual release over time making these gels potentially suitable for long-term wound treatment.

About the Authors

K. S. Larionov
Lomonosov Moscow State University
Russian Federation

Konstantin S. Larionov – Department of Chemistry

Leninskiye Gory 1-3, 119991 Moscow



A. Volikov
Lomonosov Moscow State University
Russian Federation

Alexander Volikov – Department of Chemistry

Leninskiye Gory 1-3, 119991 Moscow



N. A. Sobolev
Lomonosov Moscow State University
Russian Federation

Nikita A. Sobolev – Department of Chemistry

Leninskiye Gory 1-3, 119991 Moscow



D. A. Kozlov
Kurnakov Institute of General and Inorganic Chemistry of RAS
Russian Federation

Daniil A. Kozlov

Leninsky Prospect 31, 119991 Moscow



I. V. Perminova
Lomonosov Moscow State University
Russian Federation

Irina V. Perminova – Department of Chemistry

Leninskiye Gory 1-3, 119991 Moscow



References

1. Nandhini S.N., Sisubalan N., Vijayan A., Karthikeyan C., Gnanaraj M., Gideon D.A.M., Jebastin T., Varaprasad K., Sadiku R. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon, 2023, 9, P. e13128.

2. Pino P., Bosco F., Mollea C., Onida B. Antimicrobial Nano-Zinc Oxide Biocomposites forWound Healing Applications: A Review. Pharmaceutics, 2023, 15, P. 970.

3. Singh M., Thakur V., Kumar V., Raj M., Gupta S., Devi N., Upadhyay S.K., Macho M., Banerjee A., Ewe D., Saurav K. Silver Nanoparticles and Its Mechanistic Insight for Chronic Wound Healing: Review on Recent Progress. Molecules, 2022, 27, P. 5587.

4. Mishra P.K., Mishra H., Ekielski A., Talegaonkar S., Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discovery Today, 2017, 22, P. 1825–1834.

5. Vasile B.S., Oprea O., Voicu G., Ficai A., Andronescu E., Teodorescu A., Holban A. Synthesis and characterization of a novel controlled release zinc oxide/gentamicin–chitosan composite with potential applications in wounds care. International journal of pharmaceutics, 2014, 463, P. 161–169.

6. Mohandas A., PT S.K., Raja B., Lakshmanan V.K., Jayakumar R. Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. International journal of nanomedicine, 2015, 10, P. 53–66.

7. Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett, 2015, 7, P. 219–242.

8. Shaba E.Y., Jacob J.O., Tijani J.O., Suleiman M.A.T. A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl Water Sci, 2021, 11, P. 48.

9. Zheng J.H., Jiang Q., Lian J.S. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Applied Surface Science, 2011, 257, P. 5083–5087.

10. Gerbreders V., Krasovska M., Sledevskis E., Gerbreders A., Mihailova I., Tamanis E., Ogurcovs A. Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 2020, 22, P. 1346–1358.

11. Hasnidawani J.N., Azlina H.N., Norita H., Bonnia N.N., Ratim S., Ali E.S. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry, 2016, 19, P. 211–216.

12. Wojnarowicz J., Chudoba T., Lojkowski W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomaterials, 2020, 10, P. 1086.

13. Zhang F. Grand Challenges for Nanoscience and Nanotechnology in Energy and Health. Front. Chem., 2017, 5, P. 80.

14. Arati Sharma S.V.M., Robertson G.P. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opinion on Drug Metabolism & Toxicology, 2012, 8, P. 47–69.

15. H¨uhn D., Kantner K., Geidel C., Brandholt S., De Cock I., Soenen S.J.H., Rivera Gil P., Montenegro J.-M., Braeckmans K., M¨ullen K., Nienhaus G.U., Klapper M., Parak W.J. Polymer-Coated Nanoparticles Interacting with Proteins and Cells: Focusing on the Sign of the Net Charge. ACS Nano, 2013, 7, P. 3253–3263.

16. Sathiyaseelan A., Vishven Naveen K., Zhang X., Han K., Wang M.-H. Research progress on chitosan-zinc oxide nanocomposites fabrication, characterization, biomedical and environmental applications. Coordination Chemistry Reviews, 2023, 496, P. 215398.

17. Agban Y., Mugisho O.O., Thakur S.S., Rupenthal I.D. Characterization of Zinc Oxide Nanoparticle Cross-Linked Collagen Hydrogels. Gels, 2020, 6, P. 37.

18. Shahvalizadeh R., Ahmadi R., Davandeh I., Pezeshki A., Seyed Moslemi S.A., Karimi S., Rahimi M., Hamishehkar H., Mohammadi M. Antimicrobial bio-nanocomposite films based on gelatin, tragacanth, and zinc oxide nanoparticles – Microstructural, mechanical, thermo-physical, and barrier properties. Food Chemistry, 2021, 354, P. 129492.

19. Parani M., Lokhande G., Singh A., Gaharwar A.K. Engineered Nanomaterials for Infection Control and Healing Acute and ChronicWounds. ACS Appl. Mater. Interfaces, 2016, 8, P. 10049–10069.

20. ˇ Sebesta M., Kolenˇec´ık M., Ur´ık M., Bujdoˇs M., V´avra I., Dobroˇecka E., Smilek J., Kalina M., Diviˇs P., Pav´uk M., Miglierini M., Kratoˇsov´a G., Mat´uˇs P. Increased Colloidal Stability and Decreased Solubility—Sol—Gel Synthesis of Zinc Oxide Nanoparticles with Humic Acids. J. Nanosci. Nanotechnol, 2019, 19, P. 3024–3030.

21. Hayes M., MacCarthy P., Malcolm R., Swift R. The search for structure: setting the scene. Humic substances II, in search of struture. Chichester, John, Wiley & Sons, 1989, P. 3–33.

22. Nebbioso A., Piccolo A. Basis of a Humeomics Science: Chemical Fractionation and Molecular Characterization of Humic Biosuprastructures. Biomacromolecules, 2011, 12, P. 1187–1199.

23. Ji Y., Zhang A., Chen X., Che X., Zhou K., Wang Z. Sodium humate accelerates cutaneous wound healing by activating TGF-/Smads signaling pathway in rats. Acta Pharmaceutica Sinica B, 2016, 6, P. 132–140.

24. Lipczynska-Kochany E., Kochany J. Humic substances in bioremediation of industrial wastewater—Mitigation of inhibition of activated sludge caused by phenol and formaldehyde. Journal of Environmental Science and Health, Part A, 2008, 43, P. 619–626.

25. Wan J., Dong W., Tokunaga T.K. Method to Attenuate U(VI) Mobility in Acidic Waste Plumes Using Humic Acids. Environ. Sci. Technol., 2011, 45, P. 2331–2337.

26. Liu J.F., Zhao Z.S., Jiang G.B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental science & technology, 2008, 42, P. 6949–6954.

27. Polyakov A.Yu., Lebedev V.A., Shirshin E.A., Rumyantsev A.M., Volikov A.B., Garshev A.V., Goodilin E.A., Perminova I.V. Non-classical growth of water-redispersible spheroidal gold nanoparticles assisted by leonardite humate. Cryst. Eng. Comm., 2017, 19, P. 876–886.

28. Ghosh S., Jiang W., McClements J.D., Xing B. Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes. Langmuir, 2011, 27, P. 8036–8043.

29. Kulikova N.A., Polyakov A.Y., Lebedev V.A., Abroskin D.P., Volkov D.S., Pankratov D.A., Klein O.I., Senik S.V., Sorkina T.A., Garshev A.V., Veligzhanin A.A., Garcia Mina J.M., and Perminova I.V. Key roles of size and crystallinity of nanosized iron (hydr)oxides stabilized by humic substances in iron bioavailability to plants. Journal of Agricultural and Food Chemistry, 2017, 65(51), P. 11157–11169.

30. Sorkina T.A., Polyakov A.Yu., Kulikova N.A., Goldt A.E., Philippova O.I., Aseeva A.A., Veligzhanin A.A., Zubavichus Ya.V., Pankratov D.A., Goodilin E.A., Perminova I.V. Nature-inspired soluble iron-rich humic compounds: new look at the structure and properties. Journal of Soils and Sediments, 2014, 14(2), P. 261–268.

31. Perminova I.V. Humic substances-assisted synthesis of nanoparticles in the nature and in the lab. In Functions of Natural Organic Matter in Changing Environment. Eds. J. Xu, J. Wu, Y. He. Zhejiang University Press and Springer Science+Business Media, Dordrecht, 2013 P. 735–740.

32. Schepetkin I.A., Khlebnikov A.I., Ah S.Y.,Woo S.B., Jeong C.-S., Klubachuk O.N., Kwon B.S. Characterization and biological activities of humic substances from mumie. J. Agric. Food Chem., 2003, 51, P. 5245–5254.

33. Jayakumar R., Sudheesh Kumar P., Mohandas A., Lakshmanan V.-K., Biswas R. Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. IJN, 2015, 53.

34. Sherafatkhah Azari S., Alizadeh A., Roufegarinejad L., Asefi N., Hamishehkar H. Preparation and characterization of gelatin/-glucan nanocomposite film incorporated with ZnO nanoparticles as an active food packaging system. J. Polym. Environ, 2021, 29, P. 1143–1152.

35. Nafchi A.M., Alias A.K., Mahmud S., Robal M. Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of Food Engineering, 2012 113, P. 511–519.

36. Ismail S.H., Hamdy A., Ismail T.A., Mahboub H.H., Mahmoud W.H., Daoush W.M. Synthesis and characterization of antibacterial Carbopol/ZnO hybrid nanoparticles gel. Crystals, 2021, 11, 1092.

37. Sakohara S., Mori K. Preparation of ZnO nanoparticles in amphiphilic gel network. J Nanopart Res, 2008, 10, P. 297–305.

38. Rakhshaei R., Namazi H. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Materials Science and Engineering: C, 2017, 73, P. 456–464.

39. Yadollahi M., Gholamali I., Namazi H., Aghazadeh M. Synthesis and characterization of antibacterial carboxymthyl cellulose/ZnO nanocomposite hydrogels. International Journal of Biological Macromolecules, 2015, 74, P. 136–141.

40. Zafar A., Khosa M.K., Noor A., Qayyum S., Saif M.J. Carboxymethyl Cellulose/Gelatin Hydrogel films loaded with Zinc Oxide nanoparticles for sustainable food packaging applications. Polymers, 2022, 14, P. 5201.

41. Lutterotti L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(3-4), P. 334–340.

42. Polyakov A.Yu, Goldt A.E., Sorkina T.A., Perminova I.V., Pankratov D.A., Goodilin E.A., Tretyakov Y.D. Constrained growth of anisotropic magnetic -FeOOH nanoparticles in the presence of humic substances CrystEngComm, 2012, 14(23), P. 8097–8102.

43. Goh E.G., Xu X., McCormick P.G. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scripta Materialia, 2014, 78–79, P. 49–52.

44. Arif A., Belahssen O., Gareh S., Benramache S. The calculation of band gap energy in zinc oxide films. J. Semicond, 2015, 36, P. 013001.


Review

For citations:


Larionov K.S., Volikov A., Sobolev N.A., Kozlov D.A., Perminova I.V. Slow zinc release from carboxymethylcellulose gels filled with humic zinc oxide nanocomposites. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(6):652-659. https://doi.org/10.17586/2220-8054-2023-14-6-652-659

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)