Медленное высвобождение цинка из карбоксиметилцеллюлозных гелей, наполненных гуминовыми нанокомпозитами оксида цинка
https://doi.org/10.17586/2220-8054-2023-14-6-652-659
Аннотация
Цель работы - исследование нанокомпозитов оксида цинка и гуминовых веществ (ГВ), направленном на оценку возможности их применении для заживления ран в виде фармацевтически активных компонентов гидрогелей. Наночастицы оксида цинка синтезировали в присутствии различных концентраций гуминовых веществ. Анализ полученных нанокомпозитов вели с использованием методов рентгеновской дифрактометрии, ПЭМ, СЭМ и УФ-видимой спектроскопии. Найдено, что размер наночастиц ZnO уменьшался от 50 до 15 нм по мере увеличения концентрации ГВ. ПЭМ-изображения показали присутствие звездообразных агрегатов частиц ZnO размером 200-500 нм, которые формировались в отсутствие гуминовых веществ (ГВ). В присутствии ГВ наблюдалось образование бесформенных частиц с размерами в диапазоне от 20 до 200 нм. Спектры поглощения показали характерный пик ZnO около 360 нм, который смещался наряду с увеличением концентрации ГВ. Согласно выполненным расчетам, ширина запрещенной зоны наночастиц ZnO увеличилась с 3,35 эВ до 3,51 эВ по мере увеличения концентрации ГВ до 15 г/л. Это может указывать на образование дефектов в кристаллах ZnO в результате взаимодействия с ГВ. Синтезированные нанокомпозиты ZnO-HS были использованы для заполнения гидрогелей карбоксиметилцеллюлозы (КМЦ). Для имитации состояния раны были проведены исследования высвобождения ионов цинка из геля в бульон Мюллера-Хинтона и 0.1М ацетатный буфер. Динамика концентрации Zn в приемных растворах показала замедленное высвобождение с течением времени, что делает эти гели потенциально пригодными для длительного лечения ран.
Об авторах
К. С. ЛарионовРоссия
А. Б. Воликов
Россия
Н. А. Соболев
Россия
Д. А. Козлов
Россия
И. В. Перминова
Россия
Список литературы
1. Nandhini S.N., Sisubalan N., Vijayan A., Karthikeyan C., Gnanaraj M., Gideon D.A.M., Jebastin T., Varaprasad K., Sadiku R. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon, 2023, 9, P. e13128.
2. Pino P., Bosco F., Mollea C., Onida B. Antimicrobial Nano-Zinc Oxide Biocomposites forWound Healing Applications: A Review. Pharmaceutics, 2023, 15, P. 970.
3. Singh M., Thakur V., Kumar V., Raj M., Gupta S., Devi N., Upadhyay S.K., Macho M., Banerjee A., Ewe D., Saurav K. Silver Nanoparticles and Its Mechanistic Insight for Chronic Wound Healing: Review on Recent Progress. Molecules, 2022, 27, P. 5587.
4. Mishra P.K., Mishra H., Ekielski A., Talegaonkar S., Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discovery Today, 2017, 22, P. 1825–1834.
5. Vasile B.S., Oprea O., Voicu G., Ficai A., Andronescu E., Teodorescu A., Holban A. Synthesis and characterization of a novel controlled release zinc oxide/gentamicin–chitosan composite with potential applications in wounds care. International journal of pharmaceutics, 2014, 463, P. 161–169.
6. Mohandas A., PT S.K., Raja B., Lakshmanan V.K., Jayakumar R. Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. International journal of nanomedicine, 2015, 10, P. 53–66.
7. Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett, 2015, 7, P. 219–242.
8. Shaba E.Y., Jacob J.O., Tijani J.O., Suleiman M.A.T. A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl Water Sci, 2021, 11, P. 48.
9. Zheng J.H., Jiang Q., Lian J.S. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Applied Surface Science, 2011, 257, P. 5083–5087.
10. Gerbreders V., Krasovska M., Sledevskis E., Gerbreders A., Mihailova I., Tamanis E., Ogurcovs A. Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 2020, 22, P. 1346–1358.
11. Hasnidawani J.N., Azlina H.N., Norita H., Bonnia N.N., Ratim S., Ali E.S. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry, 2016, 19, P. 211–216.
12. Wojnarowicz J., Chudoba T., Lojkowski W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphologies. Nanomaterials, 2020, 10, P. 1086.
13. Zhang F. Grand Challenges for Nanoscience and Nanotechnology in Energy and Health. Front. Chem., 2017, 5, P. 80.
14. Arati Sharma S.V.M., Robertson G.P. Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opinion on Drug Metabolism & Toxicology, 2012, 8, P. 47–69.
15. H¨uhn D., Kantner K., Geidel C., Brandholt S., De Cock I., Soenen S.J.H., Rivera Gil P., Montenegro J.-M., Braeckmans K., M¨ullen K., Nienhaus G.U., Klapper M., Parak W.J. Polymer-Coated Nanoparticles Interacting with Proteins and Cells: Focusing on the Sign of the Net Charge. ACS Nano, 2013, 7, P. 3253–3263.
16. Sathiyaseelan A., Vishven Naveen K., Zhang X., Han K., Wang M.-H. Research progress on chitosan-zinc oxide nanocomposites fabrication, characterization, biomedical and environmental applications. Coordination Chemistry Reviews, 2023, 496, P. 215398.
17. Agban Y., Mugisho O.O., Thakur S.S., Rupenthal I.D. Characterization of Zinc Oxide Nanoparticle Cross-Linked Collagen Hydrogels. Gels, 2020, 6, P. 37.
18. Shahvalizadeh R., Ahmadi R., Davandeh I., Pezeshki A., Seyed Moslemi S.A., Karimi S., Rahimi M., Hamishehkar H., Mohammadi M. Antimicrobial bio-nanocomposite films based on gelatin, tragacanth, and zinc oxide nanoparticles – Microstructural, mechanical, thermo-physical, and barrier properties. Food Chemistry, 2021, 354, P. 129492.
19. Parani M., Lokhande G., Singh A., Gaharwar A.K. Engineered Nanomaterials for Infection Control and Healing Acute and ChronicWounds. ACS Appl. Mater. Interfaces, 2016, 8, P. 10049–10069.
20. ˇ Sebesta M., Kolenˇec´ık M., Ur´ık M., Bujdoˇs M., V´avra I., Dobroˇecka E., Smilek J., Kalina M., Diviˇs P., Pav´uk M., Miglierini M., Kratoˇsov´a G., Mat´uˇs P. Increased Colloidal Stability and Decreased Solubility—Sol—Gel Synthesis of Zinc Oxide Nanoparticles with Humic Acids. J. Nanosci. Nanotechnol, 2019, 19, P. 3024–3030.
21. Hayes M., MacCarthy P., Malcolm R., Swift R. The search for structure: setting the scene. Humic substances II, in search of struture. Chichester, John, Wiley & Sons, 1989, P. 3–33.
22. Nebbioso A., Piccolo A. Basis of a Humeomics Science: Chemical Fractionation and Molecular Characterization of Humic Biosuprastructures. Biomacromolecules, 2011, 12, P. 1187–1199.
23. Ji Y., Zhang A., Chen X., Che X., Zhou K., Wang Z. Sodium humate accelerates cutaneous wound healing by activating TGF-/Smads signaling pathway in rats. Acta Pharmaceutica Sinica B, 2016, 6, P. 132–140.
24. Lipczynska-Kochany E., Kochany J. Humic substances in bioremediation of industrial wastewater—Mitigation of inhibition of activated sludge caused by phenol and formaldehyde. Journal of Environmental Science and Health, Part A, 2008, 43, P. 619–626.
25. Wan J., Dong W., Tokunaga T.K. Method to Attenuate U(VI) Mobility in Acidic Waste Plumes Using Humic Acids. Environ. Sci. Technol., 2011, 45, P. 2331–2337.
26. Liu J.F., Zhao Z.S., Jiang G.B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental science & technology, 2008, 42, P. 6949–6954.
27. Polyakov A.Yu., Lebedev V.A., Shirshin E.A., Rumyantsev A.M., Volikov A.B., Garshev A.V., Goodilin E.A., Perminova I.V. Non-classical growth of water-redispersible spheroidal gold nanoparticles assisted by leonardite humate. Cryst. Eng. Comm., 2017, 19, P. 876–886.
28. Ghosh S., Jiang W., McClements J.D., Xing B. Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes. Langmuir, 2011, 27, P. 8036–8043.
29. Kulikova N.A., Polyakov A.Y., Lebedev V.A., Abroskin D.P., Volkov D.S., Pankratov D.A., Klein O.I., Senik S.V., Sorkina T.A., Garshev A.V., Veligzhanin A.A., Garcia Mina J.M., and Perminova I.V. Key roles of size and crystallinity of nanosized iron (hydr)oxides stabilized by humic substances in iron bioavailability to plants. Journal of Agricultural and Food Chemistry, 2017, 65(51), P. 11157–11169.
30. Sorkina T.A., Polyakov A.Yu., Kulikova N.A., Goldt A.E., Philippova O.I., Aseeva A.A., Veligzhanin A.A., Zubavichus Ya.V., Pankratov D.A., Goodilin E.A., Perminova I.V. Nature-inspired soluble iron-rich humic compounds: new look at the structure and properties. Journal of Soils and Sediments, 2014, 14(2), P. 261–268.
31. Perminova I.V. Humic substances-assisted synthesis of nanoparticles in the nature and in the lab. In Functions of Natural Organic Matter in Changing Environment. Eds. J. Xu, J. Wu, Y. He. Zhejiang University Press and Springer Science+Business Media, Dordrecht, 2013 P. 735–740.
32. Schepetkin I.A., Khlebnikov A.I., Ah S.Y.,Woo S.B., Jeong C.-S., Klubachuk O.N., Kwon B.S. Characterization and biological activities of humic substances from mumie. J. Agric. Food Chem., 2003, 51, P. 5245–5254.
33. Jayakumar R., Sudheesh Kumar P., Mohandas A., Lakshmanan V.-K., Biswas R. Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. IJN, 2015, 53.
34. Sherafatkhah Azari S., Alizadeh A., Roufegarinejad L., Asefi N., Hamishehkar H. Preparation and characterization of gelatin/-glucan nanocomposite film incorporated with ZnO nanoparticles as an active food packaging system. J. Polym. Environ, 2021, 29, P. 1143–1152.
35. Nafchi A.M., Alias A.K., Mahmud S., Robal M. Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of Food Engineering, 2012 113, P. 511–519.
36. Ismail S.H., Hamdy A., Ismail T.A., Mahboub H.H., Mahmoud W.H., Daoush W.M. Synthesis and characterization of antibacterial Carbopol/ZnO hybrid nanoparticles gel. Crystals, 2021, 11, 1092.
37. Sakohara S., Mori K. Preparation of ZnO nanoparticles in amphiphilic gel network. J Nanopart Res, 2008, 10, P. 297–305.
38. Rakhshaei R., Namazi H. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Materials Science and Engineering: C, 2017, 73, P. 456–464.
39. Yadollahi M., Gholamali I., Namazi H., Aghazadeh M. Synthesis and characterization of antibacterial carboxymthyl cellulose/ZnO nanocomposite hydrogels. International Journal of Biological Macromolecules, 2015, 74, P. 136–141.
40. Zafar A., Khosa M.K., Noor A., Qayyum S., Saif M.J. Carboxymethyl Cellulose/Gelatin Hydrogel films loaded with Zinc Oxide nanoparticles for sustainable food packaging applications. Polymers, 2022, 14, P. 5201.
41. Lutterotti L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(3-4), P. 334–340.
42. Polyakov A.Yu, Goldt A.E., Sorkina T.A., Perminova I.V., Pankratov D.A., Goodilin E.A., Tretyakov Y.D. Constrained growth of anisotropic magnetic -FeOOH nanoparticles in the presence of humic substances CrystEngComm, 2012, 14(23), P. 8097–8102.
43. Goh E.G., Xu X., McCormick P.G. Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scripta Materialia, 2014, 78–79, P. 49–52.
44. Arif A., Belahssen O., Gareh S., Benramache S. The calculation of band gap energy in zinc oxide films. J. Semicond, 2015, 36, P. 013001.
Рецензия
Для цитирования:
Ларионов К.С., Воликов А.Б., Соболев Н.А., Козлов Д.А., Перминова И.В. Медленное высвобождение цинка из карбоксиметилцеллюлозных гелей, наполненных гуминовыми нанокомпозитами оксида цинка. Наносистемы: физика, химия, математика. 2023;14(6):652-659. https://doi.org/10.17586/2220-8054-2023-14-6-652-659
For citation:
Larionov K.S., Volikov A., Sobolev N.A., Kozlov D.A., Perminova I.V. Slow zinc release from carboxymethylcellulose gels filled with humic zinc oxide nanocomposites. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(6):652-659. https://doi.org/10.17586/2220-8054-2023-14-6-652-659