Synthesis under hydrothermal conditions and structural transformations of nanocrystals in the LaPO4–YPO4–(H2O) system
https://doi.org/10.17586/2220-8054-2023-14-6-660-671
Abstract
Structural transformations of nanocrystals in the LaPO4–YPO4–(H2O) oxide system were investigated under hydrothermal conditions at 230C, depending on isothermal holding times (2 hours, 7 days and 28 days). It was shown that before hydrothermal processing, phases crystallize in the system with rhabdophane structures La1-xYxPO4 nH2O (0 x 0:80) and xenotime YPO4. It has been determined that increasing the duration of isothermal treatment under hydrothermal conditions leads to the transformation of the rhabdophane phase into phases with monazite and equilibrium xenotime structures, with an intermediate crystallization of the metastable monazite phase. It is noted that only after 28 days of hydrothermal treatment at 230C, the system approaches the equilibrium composition of the phases with monazite structures La0:97Y0:03PO4 (with crystal sizes of 18–50 nm) and xenotime YPO4 (with crystal sizes of 45–90 nm). In a single-phase sample with a monazite structure La0:75Y0:25PO4, the average crystal size remains unchanged at around 20 nm after 2 hours, 7 days and 28 days of hydrothermal treatment at 230C.
Keywords
About the Authors
M. O. EnikeevaRussian Federation
Maria O. Enikeeva
194021 St. Petersburg
190013 St. Petersburg
O. V. Proskurina
Russian Federation
Olga V. Proskurina
194021 St. Petersburg
190013 St. Petersburg
E. Yu. Gerasimov
Russian Federation
Evgeny Yu. Gerasimov
Novosibirsk 630090
V. N. Nevedomskiy
Russian Federation
Vladimir N. Nevedomskiy
194021 St. Petersburg
V. V. Gusarov
Russian Federation
Victor V. Gusarov
194021 St. Petersburg
References
1. Pawł´ow J., Zdo´nczyk M., Guzik M., Boulon G., Guyot Y., Wilk-Kozubek M., Mudring A.-V., Cybi´nska J. Influence of ionic liquid and oleic acid assisted methods on the spectroscopic properties of Nd3+-doped GdPO4 nano-particles. J. Mater. Chem., 2023, 11(22), P. 7227–7242.
2. Bouddouch A., Amaterz E., Taoufyq A., Bakiz B., Guinneton F., Villain S., Valmalette J.C., Gavarri J.R., Benlhachemi A. Photocatalytic and photoluminescent properties of a system based on SmPO4 nanostructure phase. Mater. Today Proc., 2020, 27(4), P. 3139–3144.
3. Kahouadji B., Guerbous L., Boukerika A., Doli´c S.D., Jovanovi´c D.J., Drami´canin M.D. Sol gel synthesis and pH effect on the luminescent and structural properties of YPO4:Pr3+ nanophosphors. Opt. Mater., 2017, 70, P. 138–143.
4. Yang J., Wang X., Song L., Luo N., Dong J., Gan S., Zou L. Tunable luminescence and energy transfer properties of GdPO4:Tb3+, Eu3+ nanocrystals for warm-white LEDs. Opt. Mater., 2018, 85, P. 71–78.
5. Zhao R., Chen Z., Li Q., Wang X., Tang Y., Fu G., Li H., Lee J.M., Huang S. N-doped LaPO4: An effective Pt-free catalyst for electrocatalytic oxygen reduction. Chem Catal., 2022, 2(12), P. 3590–3606.
6. Ramesh K., Zheng J., Ling E.G.Y., Han Y.F., Borgna A. Synthesis, Characterization and Catalytic Activity of Uniformly Crystalline LaPO4 Nanofiber Catalysts for Ethanol Dehydration. J. Phys. Chem. C, 2009, 113(37), P. 16530–16537.
7. Woodward J., Kennel S.J., Stuckey A., Osborne D., Wall J., Rondinone A.J., Standaert R.F., Mirzadeh S. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconjug. Chem., 2011, 22(4), P. 766–776.
8. Sadowska K., Ragi´n T., Kochanowicz M., Miluski P., Dorosz J., Le´sniak M., Dorosz D., Kuwik M., Pisarska J., Pisarski W., Re´cko K., ˙ Zmojda J. Analysis of Excitation Energy Transfer in LaPO4 Nanophosphors Co-Doped with Eu3+/Nd3+ and Eu3+/Nd3+/Yb3+. Ions. Mater., 2023, 16(4), P. 1588.
9. Zhang L., Bai S., You H., Wu H., Peng Q., Li W., Cao K., Zhou Y. Submicrometre-sized EuPO4 hollow spheres: template-directed synthesis and luminescent properties. Micro Nano Lett., 2019, 14(3), P. 309–312.
10. Michel C.R., Mart´ınez-Preciado A.H., Rivera-Tello C.D. CO2 gas sensing response of YPO4 nanobelts produced by a colloidal method. Sensors Actuators B Chem., 2015, 221, P. 499–506.
11. Zhang P., Wang E., Guo C., Yang T., Hou X. High-entropy rare earth phosphates (REPO4, RE = Ho, Tm, Yb, Lu, Dy, Er and Y) with excellent comprehensive properties. J. Eur. Ceram. Soc., 2023, 35(12), P. 2892–2896.
12. Mezentseva L.P., Osipov A.V., Ugolkov V.L., Koptelova L.A., Khamova T.V. Comparative Study of the Synthesis of Ceramic Composites Based on Lanthanum Orthophosphate. Glas. Phys. Chem., 2023, 49, P. 379–385.
13. Yorov K.E., Shekunova T.O., Baranchikov A.E., Kopitsa G.P., Alm´asy L., Skogareva L.S., Kozik V.V., Malkova A.N., Lermontov S.A., Ivanov V.K. First rare-earth phosphate aerogel: sol–gel synthesis of monolithic ceric hydrogen phosphate aerogel. J. Sol-Gel Sci. Technol., 2018, 85, P. 574–584.
14. Chaudan E., Kim J., Tusseau-Nenez S., Goldner P., Malta O.L., Peretti J., Gacoin T. Polarized Luminescence of Anisotropic LaPO4:Eu Nanocrystal Polymorphs. J. Am. Chem. Soc., 2018, 140(30), P. 9512–9517.
15. Makowski M., Witkowski M.E., Drozdowski W., Wojtowicz A.J., Wisniewski K., Boatner L.A. Luminescence and scintillation properties of XPO4:Nd3+(X = Y, Lu, Sc, La) crystals. Opt. Mater., 2018, 79, P. 273–278.
16. Mezentseva L.P., Osipov A.V., Ugolkov V.L., Akatov A.A., Doil’nitsyn V.A. Physicochemical Properties of Ceramics Based on a LaPO4–DyPO4 System. Glas. Phys. Chem., 2019, 45, P. 268–271.
17. Heuser J.M., Palomares R.I., Bauer J.D., Rodriguez M.J.L., Cooper J., Lang M., Scheinost A.C., Schlenz H., Winkler B., Bosbach D., Neumeier S., Deissmann G. Structural characterization of (Sm,Tb)PO4 solid solutions and pressure-induced phase transitions. J. Eur. Ceram. Soc., 2018, 38(11), P. 4070–4081.
18. Kamel N., Remil K., Arabi M., Kamel Z., Zahri A., Metahri S. Effect of the synthesis method on the properties of a Pb-bearing (Y–Gd–Ce) rare-earth phosphate used for the confinement of high-level radioactive waste. J. Nucl. Mater., 2010, 401(1-3), P. 104–112.
19. Ni Y., Hughes J.M., Mariano A.N. Crystal chemistry of the monazite and xenotime structures. Am. Mineral., 1995, 80(1-2), P. 21–26.
20. Heuser J.M., Neumeier S., Peters L., Schlenz H., Bosbach D., Deissmann G. Structural characterisation of metastable Tb- and Dy-monazites. J. Solid State Chem., 2019, 273, P. 45–52.
21. Kijkowska R. Thermal decomposition of lanthanide orthophosphates synthesized through crystallisation from phosphoric acid solution. Thermochim. Acta., 2003, 404(1-2), P. 81–88.
22. Mooney R.C.L. X-ray diffraction study of cerous phosphate and related crystals. I. Hexagonal modification. Acta Crystallogr., 1950, 3, P. 337–340.
23. Mesbah A., Clavier N., Elkaim E., Szenknect S., Dacheux N. In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO4 0:667H2O to the hexagonal LnPO4 (Ln = Nd, Sm, Gd, Eu and Dy). J. Solid State Chem., 2017, 249, P. 221–227.
24. Subramani T., Rafiuddin M.R., Shelyug A., Ushakov S., Mesbah A., Clavier N., Qin D., Szenknect S., Elkaim E., Dacheux N., Navrotsky A. Synthesis, Crystal Structure and Enthalpies of Formation of Churchite-type REPO4 2H2O (RE = Gd to Lu) Materials. Cryst. Growth Des., 2019, 19(8), P. 4641–4649.
25. Hikichi Y., Sasaki T., Murayama K., Nomura T., Miyamoto M. Mechanochemical Changes of Weinschenkite-Type RPO4 2H2O (R = Dy, Y, Er, or Yb) by Grinding and Thermal Reactions of the Ground Specimens. J. Am. Ceram. Soc., 1989, 72(6), P. 1073–1076.
26. Ivashkevich L.S., Lyakhov A.S., Selevich A.F. Preparation and structure of the yttrium phosphate dihydrate YPO4 2H2O. Phosphorus Res. Bull., 2013, 28, P. 45–50.
27. Shelyug A., Mesbah A., Szenknect S., Clavier N., Dacheux N., Navrotsky A. Thermodynamics and stability of rhabdophanes, hydrated rare earth phosphates REPO4nH2O. Front. Chem., 2018, 6, P. 604.
28. Ochiai A., Utsunomiya S. Crystal Chemistry and Stability of Hydrated Rare-Earth Phosphates Formed at Room Temperature. Miner., 2017, 7(5), P. 84.
29. Hikichi Y., Ota T., Hattori T., Imaeda T. Synthesis and Thermal Reactions of Rhabdophane-(Y). Mineral. J., 1996, 18(3), P. 87–96.
30. Bryukhanova K.I., Nikiforova G.E., Gavrichev K.S. Synthesis and study of anhydrous lanthanide orthophosphate (Ln = La, Pr, Nd, Sm) nanowhiskers. Nanosystems: Phys. Chem. Math., 2016, 7(3), P. 451–458.
31. Enikeeva M.O., Proskurina O.V., Motaylo E.S., Danilovich D.P., Gusarov V.V. The influence of condition of the monazite structured La0:9Y0:1PO4 nanocrystals sintering on thermal and mechanical properties of the material. Nanosystems: Phys. Chem. Math., 2021, 12(6), P. 799–807.
32. Proskurina O.V., Sivtsov E.V., Enikeeva M.O., Sirotkin A.A., Abiev R. Sh., Gusarov V.V. Formation of rhabdophane-structured lanthanum orthophosphate nanoparticles in an impinging-jets microreactor and rheological properties of sols based on them. Nanosystems: Phys. Chem. Math., 2019, 10(2), P. 206–214.
33. Rafiuddin M.R., Tyagi C., Haq M.A. Synthesis and structural investigation of churchite-type REPO4 cot 2H2O (RE = Y, Gd, Dy) nanocrystals. J. Solid State Chem., 2022, 311, P. 123150.
34. Lucas S., Champion E., Bregiroux D., Bernache-Assollant D., Audubert F. Rare earth phosphate powders RePO4nH2O (Re=La, Ce or Y)—Part I. Synthesis and characterization. J. Solid State Chem., 2004, 177(4-5), P. 1302–1311.
35. Sankar S., Warrier K.G. Aqueous sol-gel synthesis of lanthanum phosphate nano rods starting from lanthanum chloride precursor. J. Sol-Gel Sci. Technol., 2011, 58, P. 195–200.
36. Mezentseva L.P., Osipov A.V., Ugolkov V.L., Akatov A.A., Doilnitsyn V.A., Maslennikova T.P., Yakovlev A.V. Sol-Gel Synthesis, Thermal Behavior of Nanopowders and Chemical Stability of La1-xHoxPO4 Ceramic Matrices. Glas. Phys. Chem., 2018, 44, P. 440–449.
37. Ugolkov V.L., Mezentseva L.P., Osipov A.V., Popova V.F., Maslennikova T.P., Akatov A.A., Doil’nitsyn V.A. Synthesis of nanopowders and physicochemical properties of ceramic matrices of the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) systems. Russ. J. Appl. Chem., 2017, 90, P. 28–33.
38. Ahmadzadeh M.A., Chini S.F., Sadeghi A. Size and shape tailored sol-gel synthesis and characterization of lanthanum phosphate (LaPO4) nanoparticles. Mater. Des., 2019, 181, P. 108058.
39. Colomer M.T., Ortiz A.L., Effect of Tb3+ doping and self-generated pressure on the crystallographic/morphological features and thermal stability of LaPO4nH2O single-crystal nanorods obtained by microwave-assisted hydrothermal synthesis. Ceram. Int., 2016, 42(16), P. 18074–18086.
40. Palma-Ram´ırez D., Dom´ınguez-Crespo M.A., Torres-Huerta A.M., Dorantes-Rosales H., Ram´ırez-Meneses E., Rodr´ıguez E. Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: Correlation between the structural and optical properties. J. Alloys Compd., 2015, 643, P. S209–S218.
41. Enikeeva M.O., Kenges K.M., Proskurina O.V., Danilovich D.P., Gusarov V.V. Influence of Hydrothermal Treatment Conditions on the Formation of Lanthanum Orthophosphate Nanoparticles of Monazite Structure. Russ. J. Appl. Chem., 2020, 93, P. 540–548.
42. Meyssamy H., Riwotzki K., Kornowski A., Naused S., Haase M. Wet-Chemical Synthesis of Doped Colloidal Nanomaterials: Particles and Fibers of LaPO4:Eu, LaPO4:Ce and LaPO4:Ce,Tb. Adv. Mater., 1999, 11(10), P. 840–844.
43. Leys J.M., Ji Y., Klinkenberg M., Kowalski P.M., Schlenz H., Neumeier S., Bosbach D., Deissmann G. Monazite-Type SmPO4 as Potential Nuclear Waste Form: Insights into Radiation Effects from Ion-Beam Irradiation and Atomistic Simulations. Materials, 2022, 15(10), P. 3434
44. Lucas S., Champion E., Bernache-Assollant D., Leroy G. Rare earth phosphate powders RePO4nH2O (Re=La, Ce or Y) II. Thermal behavior. J. Solid State Chem., 2004, 177(4-5), P. 1312–1320.
45. Enikeeva M.O., Proskurina O.V., Levin A.A., Smirnov A.V., Nevedomskiy V.N., Gusarov V.V. Structure of Y0:75La0:25PO4 0:67H2O rhabdophane nanoparticles synthesized by the hydrothermal microwave method. J. Solid State Chem., 2023, 319, P. 123829.
46. Mogilevsky P., Boakye E.E., Hay R.S. Solid solubility and thermal expansion in a LaPO4–YPO4 system. J. Am. Ceram. Soc., 2007, 90(6), P. 1899-1907.
47. Emden B. V., Thornber M., Graham J., Lincoln F.J. Solid Solution Behaviour of Synthetic Monazite and Xenotime from Structure. Proceeding pf “45th Annual Denver X-ray Conference”. Denver, Colorado, USA, 1996.
48. Mogilevsky P. On the miscibility gap in monazite-xenotime systems. Phys. Chem. Miner., 2007, 34, P. 201–214.
49. Enikeeva M.O., Proskurina O.V., Danilovich D.P., Gusarov V.V. Formation of nanocrystals based on equimolar mixture of lanthanum and yttrium orthophosphates under microwave-assisted hydrothermal synthesis. Nanosystems: Phys. Chem. Math., 2020, 11(6), P. 705–715.
50. Scherrer P.. Bestimmung der Gr¨oße und der inneren Struktur von Kolloidteilchen mittels R¨ontgenstrahlen. Nachrichten von Der Gesellschaft Der Wissenschaften Zu G¨ottingen Math.Klasse., 1918, P. 98–100.
51. Retgers J. W. The Specific Gravity of Isomorphic Mixtures. Zeitschrift F¨ur Phys. Chemie., 1889, 3, P. 497–497.
Supplementary files
![]() |
1. Supporting Materials | |
Subject | ||
Type | Other | |
Download
(1MB)
|
Indexing metadata ▾ |
Review
For citations:
Enikeeva M.O., Proskurina O.V., Gerasimov E.Yu., Nevedomskiy V.N., Gusarov V.V. Synthesis under hydrothermal conditions and structural transformations of nanocrystals in the LaPO4–YPO4–(H2O) system. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(6):660-671. https://doi.org/10.17586/2220-8054-2023-14-6-660-671