Роль неавтономных фаз в формировании и трансформации твёрдофазных оксидных систем
https://doi.org/10.17586/2220-8054-2024-15-6-755-767
Аннотация
Показано, что характер процессов в оксидных твёрдофазных системах, прежде всего в наноразмерных, определяется поведением вещества в неавтономном состоянии. В качестве основных параметров неавтономных фаз, рассмотрены состав неавтономных фаз, температура перехода неавтономных фаз в жидко-подобное состояние, равновесная (локально-равновесная) и метастабильная толщина неавтономных фаз, вязкость жидко-подобной неавтономной фазы.
Об авторе
О. В. АльмяшеваРоссия
Список литературы
1. Defay R. Etude thermodinamique de la tension superficielle. Gauntier-Vellarg and Cie, Paris, 1934, 372 p.
2. Defay R., Prigogin I. Tension superficielle et adsorption. Edition Desoer., Liege, 1951, 295 p.
3. Defay R. Prigogin I. Sanfelg A Surface Termodynamics. J. Colloid Interface Sci, 1977, 58(3), P. 498–510.
4. Rusanov A.I. Phase equilibria and surface phenomena. Chemistry, Leningrad, 1967, 234 p. (in Russian)
5. Gusarov V.V., Egorov F.K., Ekimov S.P., Suvorov S.A. M¨ossbauer study of the kinetics of formation of film states during the interaction of magnesium and iron oxides. Rus. J. Phys. Chem. of the USSR, 1987, 61(6), P. 1652–1654.
6. Gusarov V.V., Suvorov S.A. Autocatalytic solid-phase reaction of chrysoberyl formation. J. General Chem. of the USSR, 1988, 58(4), P. 932–934.
7. Gusarov V.V., Suvorov S.A. Melting-point of locally equilibrium surface phases in polycrystallibe systems based on a single volume phase. J. Appl. Chem. of the USSR, 1990, 63(8), P. 1560–1565.
8. Gusarov V.V., Suvorov S.A. Self-accelerating processes of development of solid-phase systems (synthesis and functioning). Promising directions of chemistry and chemical technology. Chemistry, Leningrad. 1991, P. 153–158.
9. Gusarov V.V., Suvorov S.A. Transformation of non-autonomous phases and compaction of polycrystalline systems. J. Appl. Chem. of the USSR, 1992, 65(7), P. 1478–1488.
10. Gusarov V.V., Suvorov S.A. Transformation-transport processes in polycrystalline systems and creep of materials. J. Appl. Chem. of the USSR, 1992, 65(10), P. 2377–2380.
11. Gusarov V.V., Suvorov S.A. Thickness of 2-dimensional non-autonomous phases in locally equilibrium polycrystalline systems based on one bulk phase. J. Appl. Chem. of the USSR, 1993, 66(7), P. 1529–1534.
12. Gusarov V.V., Popov I.Yu., Gugel Yu.V. Transformation-transport processes of formation of dynamic structures in 2-dimensional non-autonomous phases during thermomechanical processing of oxide and polycrystalline systems. J. Appl. Chem. of the USSR, 1994, 67(7), P. 1116–1120.
13. Smirnova Zh.N., Gusarov V.V., Malkov A.A., Malygin A.A., Suvorov S.S. Stabilization of the γ-form of aluminum oxide in the AlO1.5–SiO2 system with different levels of spatial conjugation of components. J. Appl. Chem. of the USSR, 1995, 68(12), P. 1950–1954.
14. Gusarov V.V., Malkov A.A., Malygin A.A., Suvorov S.A. Thermally stimulated transformations of 2-dimensional non-autonomous phases and compaction of oxide polycrystalline materials. Inorg. Mater., 1995, 31(3), P. 346–350.
15. Gusarov V.V., Almjasheva O.V. The role of non-autonomous state of matter in the formation of structure and properties of nanomaterials. Chapter 13 in the book Nanomaterials: properties and promising applications. Ed A.B. Yaroslavtsev. Scientific World Publishing House, Moscow, 2014, P. 378–403. (in Russian).
16. Gusarov V.V. Statics and dynamics of polycrystalline systems based on refractory oxides. Abstract of diss. Doctor of Chemical Sciences. St. Petersburg, 1996, 44 p.
17. Sanfeld A. Introdaction to the thermodynamics of charged and polarized layers. Wiley, N.Y., 1969, 258 p.
18. Gusarov V.V. The thermal effect of melting in polycrystalline systems. Thermochim. Acta, 1995, 256(2), P. 467–472.
19. Sanfeld A., Steinchen A. Surface stress of isotropic solid under irreversible condition. Comptes Rendus Chimie, 2003, 6(7), P. 677–682.
20. Urusov V.S., Tauson V.L., Akimov V.V. Geochemistry of solids. GEOS, Moscow, 1997, 500 p. (in Russian)
21. Tauson V.L., Parkhomenko I.Yu., Smagunov N.V., Babkin D.N., Menshikov V.I. Non-autonomous surface phases in the synthesis of sulfides and their geochemical role. Electronic scientific and information journal “Bulletin of the Department of Earth Sciences of the Russian Academy of Sciences”, 2003, 1(21).
22. Tauson V.L., Akimov V.V., Lipko S.V., Loginov B.A. Nonautonomous phases as potential sources of incompatible elements. Doklady Earth Sciences, 2006, 407(2), P. 280–283.
23. Tauson V.L., Babkin D.N., Lipko S.V., Kravtsova R.G., Grebenshchikova V.I., Lustenberg E.E. Nonautonomous nanophases on a hydrothermal pyrite surface and its geochemical significance. Doklady Earth Sciences, 2008, 423(2), P. 1501–1506.
24. Akimov V.V., Gerasimov I.N., Tauson V.L., Loginov B.A. Mucrostructure and chemical composition of nonautonomous surface phases in crystals of pirrohotine (Fe1−xS). Bulletin of the Russian Academy of Sciences: Physics., 2006, 70(7), P. 1051–1054.
25. Glavatskiy K. Multicomponent Interfacial Transport, Springer, Berlin Heidelberg, 2011.
26. Sanfeld A. Ordering induced by chemical, thermal and mechanical constraints at solid interfaces. Pure and Appl. Chem., 1984, 56(12), P. 1727–1738.
27. Novoselov A.R. Point contact and linear interfaces as non-autonomous phases, their role in wetting and heterogeneous condensation processes. Russ. J. Phys. Chem., 1991, 65(2), P. 459–463.
28. Lipko S.V. Non-autonomous phases on the surface of mineral and inorganic crystals and their role in the concentration of impurity elements. Abstract of diss. ... candidate of chemical sciences, Irkutsk, 2010, 18 p. (in Russian)
29. Neiman A.Ya., Trafieva M.F., Kostikov Yu.P. Chemistry and mass transfer routes during formation of phases of the V2O5-MoO3 system. Russ. J. Inorg. Chem., 2005, 50(10), P. 1582–1595.
30. Neiman A.Ya., Uvarov N.F., Pestereva N.N. Solid state surface and interface spreading: An experimental study. Solid State Ionics, 2007, 177(39- 40), P. 3361–3369.
31. Neiman A.Ya., Guseva A.F., Trifonova M.V., Sukhankina I.V. Surface reaction diffusion in the synthesis of molybdates and tungstates: the role of the phase composition of the products. Russ. J. Inorg. Chem., 2005, 50(3), P. 367–372.
32. Neiman A.Ya., Kulikova T.E. Electrochemistry of solid-phase reactions: Phase formation in the In2O3-WO3 system. Processes at the WO3|In2O3 and WO3|In6WO12 interfaces. Russ. J. Electrochem., 2007, 43(6), P. 682–694.
33. Neiman, A.Y., Pestereva, N.N. Tsipis, E.V. Surface diffusion, migration, and conjugated processes at heterophase interfaces between WO3 and MeWO4 (Me = Ca, Sr, Ba). Russ. J. Electrochem., 2007, 43(6), P. 672–681.
34. Pervov V.S., Makhonina E.V., Zotova A.E., Kireeva N.V., Kedrinsky I.-M.A. New possibilities to obtain ceramic nanoheterostructures with enhanced ionic conductivity. Nanotechnol Russia, 2014, 14(9), P. 347–355.
35. Krasnenko T.I., Rothermel M.V. Conditions for the formation of a non-autonomous phase during chemical and thermal deformations of complex oxides. In the book: Solid State Chemistry and Functional Materials – 2018. Thermodynamics and Materials Science. Abstracts of the Russian Conference with International Participation and the 12-th Russian Symposium with International Participation. edited by V.V. Gusarov, 2018, P. 21. (in Rassian).
36. Tauson V.L., Lipko S.V., Arsent’ev K.Y., Smagunov N.V. Crystal growth through the medium of nonautonomous phase: Implications for element partitioning in ore systems. Crystallogr. Rep., 2019, 64(3), P. 496–507.
37. Krasnenko T.I., Rotermel M.V., Samigullina, R.F. Stabilizing the associated non-autonomous phase upon thermal expansion of Zn2V2O7. Russ. J. Inorg. Chem., 2017, 62(4), P. 413–417.
38. Gerasimov I.N. Modeling of non-autonomous phase formation on the surface of inorganic mineral substances. Dissertation for the degree of candidate of chemical sciences. Irkutsk State University. Irkutsk, 2010. (in Russian).
39. Samsonov V.M., Bazulev A.N., Sdobnyakov N.Yu. On surface non-tension of small objects. Chemistry and computer modeling. Butlerov com- munications, 2002, 10, P. 267–271. Supplement to special issue. (in Russian).
40. Luo J., Chiang Y.-M. Existence and stability of nanometer-thick disordered films on oxide. Acta Materialia, 2000, 48(18–19), P. 4501–4515.
41. Kaul A.R., Gorbenko O.Yu., Kamenev A.A. The role of heteroepitaxy in the development of new thin-film oxide-based functional materials. Russ. Chem. Rev., 2004, 73(9), P. 861–880.
42. Magomedov M.N. On the dependence of surface energy on the size and shape of a nanocrystal. Physics of the Solid State, 2004, 46(5), P. 924–937. (in Russian).
43. Zhang H., Banfield J.F. Thermodynamic analysis of phase stability of nanocrystalline titania J. Mater. Chem., 1998, 8(9), P. 2073–2076.
44. Samsonov V.M., Khashin V.A. Thermodynamic approaches to the problem of phase state of nanoparticles. Condensed matter and interphases, 2007, 9(4), P. 387–391. (in Russian).
45. Rempel A.W., Wettlaufer J.S., Grae M. Worster Premelting dynamics in a continuum model of frost heave. Journal of Fluid Mechanics, 2004, 498, P. 227–244.
46. Batsanov S.S. Features of solid-phase transformations induced by shock compression. Russ. Chem. Rev., 2006, 75(7), P. 601–616.
47. Ogbezode J.E., Offia-Kalu N.E., Bello A., Anye V. Ch, Onwalu P.A. Phase structure transformation and growth mechanism for iron oxide nanoparticles synthesized by mechanochemical method: A mini-review. J.Alloys and Metallurgical Systems, 2024, 7, P. 100103
48. Kozlova T.O., Sheichenko E.D., Vasilyeva D.N., Kozlov D.A., Kolesnik I.V., Tronev I.V., Teplonogova M.A., Baranchikov A.E., Ivanov V.K. Ultrasonic-assisted hydrothermal synthesis of nanoscale double ceric phosphates. Nanosyst.: Pysh., Chem., Math., 2024, 15(2), P. 215-223.
49. Kozlova T.O., Vasilyeva D.N., Kozlov D.A., Kolesnik I.V., Teplonogova M. A., Tronev I.V., Sheichenko E.D., Protsenko M.R., Kolmanovich D.D., Ivanova O.S., Baranchikov A.E., Ivanov V.K. A Comparative study of cerium(III) and cerium(IV) phosphates for sunscreens. Molecules, 2024, 29(9), P. 2157–2157.
50. Al’myasheva O.V., Korytkova E.N., Maslov A.V., Gusarov V.V. Preparation of nanocrystalline alumina under hydrothermal conditions. Inorg. Mater., 2005, 41(5), P. 460–467.
51. Korytkova, E.N., Maslov, A.V., Pivovarova, L.N. et al. Synthesis of nanotubular Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 silicates at elevated temper- atures and pressures. Inorg Mater., 2005, 41(7), P. 743–749.
52. Enikeeva M.O., Proskurina O.V., Motaylo E.S., Danilovich D.P., Gusarov V.V. The influence of conditions of the monazite structured La0.9Y0.1PO4 nanocrystas sintering on thermal and mechanical properties of the material. Nanosyst.: Phys. Chem. Math., 2021, 12(6), P. 799–807.
53. Lomanova N.A., Tomkovich M.V., Osipov A.V., Ugolkov V.L., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of Bim+1Fem−3Ti3O3m+3 (m = 4–9) nanocrystals upon thermal decomposition of coprecipitated hydroxides. Russ. J. Inorg. Chem., 2021, 66(5), P. 755–764.
54. Gyrdasova O.I., Samigullina R.F., Vladimirova E.V., Medyankina I.S., Buldakova L.Yu., Yanchenko M.Yu., Pasechnik L.A. Precursor method for the synthesis of highly dispersed ZrO2 doped with scandium. Mendeleev Communications, 2024, 34(5), P. 640–642.
55. Zhang K., Ma Ch., Paul S., Zaffran J. Unveiling the phenol direct carboxylation reaction mechanism at ZrO2 surface. Molecular Catalysis, 2024, 569, P. 114606.
56. Boykobilov D., Thakur S., Samiev A., Nasimov A., Turaev K., Nurmanov S. Prakash J., Ruzimuradov O. Electrochemical synthesis and mod- ification of novel TiO2 nanotubes: Chemistry and role of key synthesis parameters for photocatalytic applications in energy and environment. Inorganic Chemistry Communications, 2024, 170(3), P. 113419.
57. Sozarukova M.M., Proskurnina E.V., Baranchikov A.E., Ivanov V.K. CeO2 nanoparticles as free radical regulators in biological systems. Nanosyst.: Phys. Chem. Math., 2020, 11(3), P. 324–332.
58. Popova N.R., Shekunova T.O., Popov A.L., Selezneva I.I., Ivanov V.K. Cerium oxide nanoparticles provide radioprotective effects upon X-ray irradiation by modulation of gene expression. Nanosyst.: Phys. Chem. Math., 2019, 10(5), P. 564–572.
59. Qi Junnan, Liu Huimin, Liu Guihong, Chen Yao Innovation of TiO2−x nanomaterials in the biomedical field: synthesis, properties, and applica- tion prospects. Chemical Engineering Journal, 2024, 491, P. 151773.
60. Priya Dhuria, Satnam Singh Bhamra Influence of LTSSR and TSSR synthesis methods on the structural properties of YFeO3 orthoferrite. Materials Science and Engineering: B, 2022, 285, P. 115960.
61. Tretyakov Yu.D. Solid-phase reactions. Chemistry, Moscow, 1978, 360 p. (in Russian)
62. West A.R. Solid State Chemistry and Its Applications. Wiley India Pvt. Limited, 2007, 744 p.
63. Rao C.N.R., Gopalakrishnan J. New directions in solid state chemistry. Nauka, Moscow, 1990, 520 p. (in Russian)
64. Schmalzried H. Chemical Kinetics of Solids. Weinheim, VCH, 1995, 700 p.
65. Guseva A.F., Neiman A.Ya. New data on the mechanism of mass transfer in solid-phase reactions: 1. Reactions in an electric field. Kinetics and catalysis, 1994, 35(1), P. 1–7
66. Chebotin V.M. Chemical diffusion in solids. Science, Moscow, 1989, 208 p.
67. Andrievsky R.A. Fundamentals of nanostructured materials science. Possibilities and problems. Laboratoriya znaniy, Moscow, 2029, 228 p. (in Russian)
68. Suzdalev I.P. Multifunctional nanomaterials. Russ. Chem. Rev., 2009, 78(3), P. 249–282. (in Russian)
69. Eliseev A.A., Lukashin A.V. Functional nanomaterials, Fizmatlit, Moscow, 2010, 456 p. (in Russian).
70. Guozhong Cao, Ying Wang. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications. World Scientific, 2011, 581 p.
71. Aaga G.F. Zinc oxide and its engineered derivative nanomaterials: Insight into energy, environmental, medical, agricultural, and food applications. Materials Today Sustainability, 2024, 28, P. 101051.
72. Karmakar D., Karmakar S., Ghosh A., Jana D. A comparative overview of the recent progress of some novel metal oxide and sulfide nanomaterials-based photocatalyst. Materials Today Communications, 2024, 40, P. 110115.
73. Sadykov V.A., Eremeev N.F., Shlyakhtina A.V., Pikalova E.Yu, Advances in alternative metal oxide materials of various structures for electro- chemical and catalytic applications. International Journal of Hydrogen Energy, 2024, 94, P. 179–208.
74. Faraday M. On certain conditions of freezing water. Athenaeum, 1850, 1181, P. 640–641.
75. Faraday M. XXIV. On Regelation, and on the Conservation of Force, Philos. Mag., Ser., 417, 1859, 162 p.
76. Mendeleev D.I. On the influence of touch on the course of chemical transformations. ZhRHO, 1886, 18(8). (in Russian)
77. Gibbs D. Thermodynamic works. GITTL, Moscow-Leningrad. 1950, 492 p. (in Russian)
78. Rusanov A.I., Shchukin E.D., Rebinder P.A. On the theory of dispersion. I. Thermodynamics of monodisperse systems Colloidal journal, 1968, 30(5), P. 573–580.
79. Kuni F.M., Rusanov A.I. Statistical theory of aggregative equilibrium. Theor. Math. Phys, 1970, 2(2), P. 192–206.
80. Kligman F.I., Rusanov A.I. On the thermodynamic equilibrium states of disperse systems with suspended particles. Koll. Zh., 1977, 39(1), P. 44–47. (in Russian)
81. Gusarov V.V. Statics and dynamics of polycrystalline systems based on refractory oxides: dis. Doctor of Chemical Sciences: 02.00.04. St. Petersburg, 1996, 598 p.
82. Tomkovich M.V., Andrievskaya E.R., Gusarov V.V. Formation under hydrothermal conditions and structural features of nanoparticles based on the ZrO2–Gd2O3 system. Nanosyst.: Phys., Chem., Math., 2011, 2(2), P. 6–14.
83. Smirnov A.V., Fedorov B.A., Tomkovich M.V., Almjasheva O.V., Gusarov V.V. Core-shell nanoparticles forming in the ZrO2-Gd2O3-H2O system under hydrothermal conditions. Doklady Physical Chemistry, 2014, 456(1), P. 71–73.
84. Almjasheva O.V., Smirnov A.V., Fedorov B.A., Tomkovich M.V., V.V. Gusarov. Structural features of ZrO2-Y2O3 and ZrO2-Gd2O3 nanoparti- cles formed under hydrothermal conditions. Russ. J. Gen. Chem., 2014, 84(5), P. 804–809.
85. Eshmakov R., Sherstobitov A.V., Filatova D., Konstantinova E., Rumyantseva M. SnO2/MnOx composite systems as VOCs sensors: Influence of manganese chemical state and distribution on functional performances. Materials Chemistry and Physics, 2024, 328, P. 129992
86. Shaposhnik A.V., Shaposhnik D.A., Turishchev S.Y., Chuvenkova O.A., Ryabtsev S.V., Vasiliev A.A., Vilanova X., Hernandez-Ramirez F., Morante J.R. Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites. Beilstein J. Nanotechnol, 2019, 10, P. 1380–1390.
87. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hy- droxides at hydrothermal conditions. Nanosyst.: Phys., Chem., Mathem., 2018, 9(4), P. 568–572.
88. Voronin G.F. Fundamentals of Thermodynamics Publishing House, Moscow, Moscow University, 1987, 192 p.
89. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2–H2O system. Nanosyst.: Phys., Chem., Math., 2016, 7(6), P. 1031–1049.
90. Dzhevaga E.V., Chebanenko M.I., Martinson K.D., Lobinsky A.A., Popkov V.I. One-step combustion synthesis of undoped c-ZrO2 for Cr(VI) removal form aqueous solutions. Nanotechnology, 2022, 33(41), P. 415601.
91. Proskurina O.V., Sokolova A.N., Sirotkin A.A., Abiev R.S., Gusarov V.V. Role of hydroxide precipitation conditions in the formation of nanocrys- talline BiFeO3. Russ. J. Inorg. Chem., 2021, 66(2), P. 163–169.
92. Gusarov V.V., Malkov A.A., Malygin A.A., Polyakova E.V., Khabibova S.V., Petrova L.I., Suvorov S.A. Evolution of AlO1.5–TiO2 systems with different prehistories. Russ. J. Applied Chemistry, 1991, 64(5), P. 1134–1135.
93. Eliseev A.A., Falaleev N.S., Verbitskiy N.I., Volykhov A.A., Yashina L.V., Kumskov A/, Zhigalina V.G., Vasiliev A.L., Lukashin A.V., Sloan J. Size-dependent structure relations between nanotube and encapsulated nanocrystal. Nano Letters, 2017, 17, P. 805–810.
94. Popkov V.I., Martinson K.D., Kondrashkova I.S., Enikeeva M.O., Nevedomskiy V.N., Panchuk V.V., Semenov V.G., Volkov M.P., Pleshakov I.V. SCS-assisted production of EuFeO3 core-shell nanoparticles: formation process, structural features and magnetic behavior. J. Alloys and Compounds, 2021, 859, P. 157812.
95. Koroleva E., Naberezhnov A., Rysiakiewicz-Pasek E., Vakhrushev S., Sysoeva A., Kumzerov Yu. Dielectric response of potassium nitrate in a restricted geometry. Composites Part B: Engineering, 2016, 94, P. 322–326.
96. Alekseeva O.A., Naberezhnov A.A., Fokin A.V. Effect of restricted geometry on phase transitions in nanostructured sodium nitrate. Physica B: Condensed Matter, 2025, 696, P. 416676.
97. Alekseeva O.A., Enikeeva M.O., Naberezhnov A.A., Sysoeva A.A. Stabilization of the monoclinic phase of KH2PO4 under limited geometry conditions. Technical Physics Letters, 2024, 50(11), P. 7–10.
98. Naberezhnov A.A., Alekseeva O.A., Kudryavtseva A.V., Chernyshov D.Yu., Vergentiev T.Yu., Fokin A.V. Structural transition and temperature dependences of thermal expansion coefficients of NaNO3 embedded in non-pressurized glass. Physics of the Solid State, 2022, 64(3), P. 365–370.
99. Mikhailin N.Y., Shamshur D.V., Parfen’ev R.V., Kozub V.I., Gal’perin Y.M., Kumzerov Y.A., Fokin A.V. Size dependences of the magnetic properties of superconducting lead-porous glass nanostructures. Physics of the Solid State, 2018, 60(6), P. 1068–1072.
100. Belotitskii V.I., Kumzerov Y.A., Kalmykov A.E., Kirilenko D.A., Romanov S.G., Sorokin L.M., Sysoeva A.A., Peschel U., Zhuromskyy O. Optical properties of metal nanoparticles in chrysotile channels, Technical Physics Letters, 2016, 42(6), P. 656–658.
101. Kumzerov Y.A., Naberezhnov A.A. Effect of restricted geometry on the superconducting properties of low-melting metals (review article). Low Temperature Physics, 2016, 42(11), P. 1028–1040.
102. Gatina E.N., Maslennikova T.P. Formation of chrysotile nanotubes with titania in the internal channel. Nanosyst: Phys, Chem, Math., 2024, 15(3), P. 380–387.
103. Almjashev O.V., Gusarov V.V. Effect of ZrO2 nanocrystals on the stabilization of the amorphous state of alumina and silica in the ZrO2–Al2O3 and ZrO2–SiO2 systems. Glass Physics and Chemistry, 2006, 32(2), P. 162–166.
104. Al’myasheva O.V., Gusarov V.V. Nucleation in media in which nanoparticles of another phase are distributed. Doklady Physical Chemistry, 2009, 424(2), P. 43–45.
105. Al’myashev O.V., Gusarov V.V. Features of the phase formation in the nanocomposites. Russ. J. Gen. Chem., 2010, 80(3), P. 385–390.
106. Zlobin V.V., Krasilin A.A., Almjasheva O.V. Effect of heterogeneous inclusions on the formation of TiO2 nanocrystals in hydrothermal conditions. Nanosyst.: Phys., Chem., Mathem., 2019, 10(6), P. 733–739.
107. Tammann G, Mansuri Q.A. Metallographische mitteilungen aus dem Institut f¨ur physikalische chemie der universit¨at g¨ottingen CXIII. Zur Rekristallisation von Metallen und Salzen. Zeitschrift f¨ur anorganische und allgemeine Chemie, 1923, 126, 119 p.
108. H¨uttig G.F., Theimer H., Breuer W. ¨Uber reaktionen fester stoffe: 126. Mitteilung. ¨Uber die entgasung fester stoffe. Zeitschrift f¨ur anorganische und allgemeine Chemie, 1942, 249(2), P. 134–145.
109. Kaur I., Gust W. Fundamentals of grain and interphase boundary diffusion. Stuttgart: Ziegler Press, 1989, 422 p. (Russ. ed.: Kaur, I., Gust, W. Diffuziya po granitsam zeren i faz. Moscow: Mashinostroenie, 1991, 446 p.)
110. Hwang J.C.M., Ho P.S., Lews J.E., Campbell D.R. Grain boundary diffusion of aluminum in polycrystalline silicon films. J. Appl. Phys. 1980, 51(3), P. 1576–1581.
111. Hwang J.C.M., Amos D.E., Nelson G.C. Analysis of grain-boundary diffusion in thin films: Chromium in gold. J. Appl. Phys., 1976, 47(9), P. 3769–3775.
112. Wuttig M., Brinbaum H.K. Self-Diffusion along edge dislocations in nickel. Phys. Rev., 1966, 147, P. 495.
113. Fletcher N.H. The Chemical Physics of Ice Cambridge Univ. Press. 1970, 271 p.
114. Barer S.S., Klividze V.I., Kurzaev A.B., Sobolev V.D., Churaev N.V. Thickness and viscosity of thin non-freezing layers between the surface of ice and quartz. Doklady USSR Academy of Sciences, 1977, 235(3), P. 601. (in Russian)
115. Gilpin R.R. A model for the prediction of ice lensing and frost heave in soils. Water Resour. Res., 1980, 16(5), P. 918.
116. Clarke D.R. On the equilibrium thickness of intergranular glass phases in ceramic materials. J. Am. Seram. Soc., 1987, 70(1), P. 15–25.
117. Kikuchi R., Cahn J.W. Grain-boundary melting transition in a two-dimension lattice-gas model. Phys. Rev. B., 1980, 21(5), P. 1893.
118. Mizuno Y. Hanafusa N. Studies of surface properties of ice using nuclear magnetic resonance. J. Phys. Colloques, 1987, 48, P. C1-511–C1-517.
119. Dash J.G. Surface melting. Contemp. Phys., 1989, 30(2), P. 89.
120. Elbaum M., Schick M. Application of the theory of dispersion forces to the surface melting of ice. Phys. Rev. Lett., 1991, 66(13), P. 1713.
121. Elbaum M., Lipson S.G., Dash J.G. Optical study of surface melting on ice. J. Cryst. Growth., 1993, 129, P. 491.
122. Dash, J.G., Haiying Fu, Wettlaufer, J.S. The premelting of ice and its environmental consequences. Reports Prog. Phys., 1995, 58, P. 115.
123. Wettlaufer J.S., Worster M.G., Wilen L.A., Dash J.G. A theory of premelting dynamics for all power law forces. Phys. Rev. Lett., 1996, 76, P. 3602
124. Shultz M.J. Ice surfaces. Annu. Rev. Phys. Chem., 2017, 68, P. 285.
125. Slater B., Michaelides A. Surface premelting of water ice. Nat Rev Chem, 2019,3, P. 172–188.
126. Canale L., Comtet J., Nigu‘es A., Cohen C., Clanet C., SiriaA., Bocquet L. Nanorheology of interfacial water during ice gliding. Phys. Rev., 2019, X9, P. 041025.
127. Richhariya V., Tripathy A., Carvalho O., Nine J., Losic D., Silva F.S. Unravelling the physics and mechanisms behind slips and falls on icy surfaces: A comprehensive review and nature-inspired solutions. Materials & Design, 2023, 234, P. 112335.
128. Boxe C.S., Saiz-Lopez A. Influence of thin liquid films on polar ice chemistry: Implications for Earth and planetary science. Polar Science, 2009, 3, P. 73–81.
129. Pavlovska A., Dobrev D., Bauer E. Orientation dependence of the quasi-liquid layer on tin and indium crystals. Surface Science, 1994, 314, P. 341–352.
130. Smit W.J., Bakker H.J. The Surface of Ice Is Like Supercooled Liquid Water. Angew. Chem., 2017, 129, P. 15746–15750.
131. Bluhm H., Ogletree D.F., Fadley C.S., Hussain, Z., Salmeron M. The premelting of ice studied with photoelectron spectroscopy. J. Phys. Condens. Matter., 2002, 14, P. L227–L233.
132. Conde M. M., Vega C. Patrykiejew A. The thickness of a liquid layer on the free surface of ice as obtained from computer simulation. J. Chem. Phys., 2008, 129, P. 014702.
133. Pickering I., Paleico M., Sirkin Y.A.P., Scherlis D.A., Factorovich M.H. Grand canonical investigation of the quasi-liquid layer of ice: is it liquid? J. Phys. Chem. B, 2018, 122, P. 4880–4890.
134. Dosch H., Lied A. & Bilgram J.H. Glancing-angle X-ray scattering studies of the premelting of ice surfaces. Surf. Sci., 1995, 327, P. 145–164.
135. Frenkel Ya.I. Liquid state and theory of melting. I. Continuity of solid and liquid states. Collection of selected works. Scientific articles. Publishing house of the USSR Academy of Sciences, Moscow-Leningrad, 1958, Vol. 2, P. 269–279. (in Russian)
136. Frenkel Ya.I. Liquid state and theory of melting. II. Theory of melting and crystallization. Collection of selected works. Scientific articles. Publishing house of the USSR Academy of Sciences, Moscow-Leningrad, 1958, Vol. 2, P. 269–279. (in Russian)
137. Ubbelode A. The Molten State of Matter. London University, London, 1978, 384 p.
138. Ubbelode A. Melting and Crystal Structure. Clarendon Press, 1965, 325 p. M, Mir, 1969, 420 p.
139. Pastukhov E.A., Vatolin N.A., List V.L., Detsov V.M., Kachin S.V. Diffraction studies of the structure of high-temperature melts. Ekaterinburg; Ural Branch of the Russian Academy of Sciences, 2003, 353 p. (in Russian).
140. Ladyanov V.I., Logunov S.V., Kuzminykh E.V. On the viscosity of micro-inhomogeneous liquid metals. Metalls, 1997, 4, P. 22. (in Russian).
141. Ladyanov V.I., Novokhatsky I.A., Logunov S.V. Estimation of the lifetime of clusters in liquid metals. Metalls, 1995, 2, P. 13. (in Rissian).
142. Psarev V.I., Ivanov A.L. On the pre-crystallization structural state of supercooled selenium melt. Russ. J. Phis. Chem., 1992, 66(3), P. 788–790. (in Russian)
143. Skripov V.P., Koverda V.P. Spontaneous crystallization of liquids. Nauka, Moscow, 1984, 232 p. (iv Russian).
144. Filippov E.S. Structure, chemistry and physics of metallurgical melts. Metallurgy, Moscow, 1995, 303 p. (in Russian)
145. Chivilikhin S.A., Gusarov V.V., Popov I.Yu., Svitenkov A.I. Model of fluid flow in a nano-channel. Russ. J. Math. Phys., 2008, 15(3), P. 409–411.
146. Popov I.Y., Rodygina O.A., Chivilikhin S.A., Gusarov V.V. Soliton in a nanotube wall and stokes flow in the nanotube. Tech. Phys. Lett., 2010, 36(9), P. 852–855.
147. Ershova A.A., Popov I.Y., Chivilikhin S.A., Gusarov V.V. Waveguide modes and adhesion conditions for flow in a nanochannel. Dokl. Phys., 2010, 55(6), P. 271–273.
148. Popov I.Yu., Chivilikhin S.A., Gusarov V.V. Model of fluid flow in nanotube: Classical and quantum features. J. Phys.: Conf. Ser., 248, 2010, Art. No 012006.
149. Chivilikhin S.A., Popov I.Yu., Gusarov V.V. Planar flows in nanoscale regions. Nanosyst.: Phys., Chem., Math., 2011, 2(3), P. 49-52.
150. Chivilikhin S.A., Popov I.Yu., Aryslanova E.M., Vavulin D.N., Gusarov V.V. Liquid flow in nanotubes. J. Phys.: Conf. Ser., 2012, 345, Art. No 012036.
151. Chivilikhin S.A., Gusarov V.V., Popov I.Yu. Flows in nanostructures: hybrid classical-quantum models. Nanosyst.: Phys., Chem., Math., 2012, 3(1), P. 7–26.
152. Belonenko M.B., Chivilikhin S.A., Gusarov V.V., Popov I.Yu., Rodygina O.A. Soliton-induced flow in carbon nanotube. Europhysics Letters., 2013, 101(6), P. 66001.
153. Rodygina O.A., Chivilikhin S.A., Popov I.Yu., Gusarov V.V. Crystallite model for flow in nanotube caused by wall soliton. Nanosyst.: Phys., Chem., Math., 2014, 5(3), P. 400–404.
154. Chivilikhin S.A., Gusarov V.V., Popov I.Yu. Charge pumping in nanotube filled with electrolyte. Chinese J. Phys., 2018, 56(5), P. 2531–2537.
155. Almjasheva O.V., Popkov V.I., Proskurina O.V., Gusarov V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosyst.: Phys., Chem., Math., 2022, 13(2), P. 164–180.
156. Almiasheva O.V. Formation of oxide nanocrystals and nanocomposites under hydrothermal conditions, structure and properties of materials based on them: dis. Doctor of Chemical Sciences: 02.00.21. Moscow, 2018, 362 p.
157. Gilpin R.R. A Model of the “Liquid-Like” layer between ice and a substrate with applications to wire regelation and particle migration. J. Colloid and Interface Science, 1979, 68(2), P. 235–251.
158. Frenkel J. The Liquid State and the Theory of Fusion. Acta Physicochimica URSS, 1935, 3, P. 633–648.
159. Gusarov V.V., Popov I.Yu. Dynamic structure formation during high-temperature deformation of polycrystalline oxides. Izvestiya Universiteta. Physics., 1995, 38(8), P. 69–75.
160. Gusarov V.V., Popov I.Yu. Flows in two-dimensional nonautonomous phases in polycrystalline system. Nuovo Cimento della Societa Italiana di Fisica D., 1996. 18D(7), P. 799–805.
161. D¨oppenschmidt A., Butt H.J. Measuring the thickness of the Liquid-like layer on ice surfaces with atomic force microscopy. Langmuir, 2000, 16, P. 6709.
162. Kornienko M.E., Sheiko N.L., Kornienko O.M., Nikolaienko T.Y. Discrete properties of quasi-liquid water film in the ice premelting range. 1. Temperature dependences of water nanofilm thickness and viscoelastic properties of polycrystalline ice. Ukr. J. Phys., 2013, 58, P. 151.
163. Conde M.M., Vega C., Patrykiejew A. The thickness of a liquid layer on the free surface of ice as obtained from computer simulation. J. Chem. Phys., 2008, 129, P. 014702.
164. Wettlaufer J.S. Ice surfaces: Macroscopic effects of microscopic structure. Phil. Trans. R. Soc. A, 1999, 357, P. 3403.
165. Schmalzried H. Chemical kinetics of solids. Weinheim: VCH, 1995, 700 p.
166. Gusarov V.V., Ishutina Z.N., Malkov A.A., Malygin A.A. Peculiarities of the solid-phase chemical reaction in formation of mullite in the nanosize film composition. Doklady Akademii Nauk., 1997, 357(2), P. 203–205. (In Russian).
167. Smirnova Zh.N., Gusarov V.V., Malkov A.A., Firsanova T.V., Malygin A.A., Suvorov S.A. High-speed synthesis of mullite. Russ. J. Gen. Chem., 1995, 65(2), P. 199–204.
168. Gusarov V.V., Malkov A.A., Ishutina Zh.N., Malygin A.A. Phase formation in a nanosized silicon oxide film on the surface of aluminum oxide. Tech. Phys. Lett., 1998, 24(1), P. 3–8.
169. Kol’tsov S.I., Aleskovskii V.B. Effect of degree of dehydration of silica gel on mechanism of hydrolysis of adsorbed titanium tetrachloride. Russ. J. Phys. Chem., 1968, 42(5), P. 630–632.
170. Aleskovskii V.B. Chemistry and technology of solids. J. Appl. Chem. of the USSR, 1974, 47(10), P. 2207–2217.
171. Malygin A.A. Molecular Layering Nanotechnology. Nanotechnologies in Russia (Rossiiskie Nanotekhnologii), 2007, 2(3-4), P. 87–100. (In Russian)
172. Malygin A.A., Drozd V.E., Malkov A.A., Smirnov V.M. From V.B. Aleskovskii’s “Framework” hypothesis to the method of molecular layer- ing/atomic layer deposition. Chemical Vapor Deposition, 2015, 21, P. 216–240.
173. Sosnov E.A., Malkov A.A., Malygin A.A. Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes (a Review): I. History of the Development of the Molecular Layering Method. Russ. J. Appl. Chem., 2021, 94(8), P. 1022– 1037.
174. Almjasheva O.V., Gusarov V.V. Effect of ZrO2 nanocrystals on the stabilization of the amorphous state of alumina and silica in the ZrO2- Al2O3and ZrO2-SiO2 systems. Glass Physics and Chemistry, 2006, 32(2), P. 162–166
175. Bachina A., Almajasheva O.V., Danilovich D.P., Popkov V.I. Synthesis, crystal structure and thermophysical properties of ZrTiO4 nanoceramics. Russ. J. Phys. Chem. A: Focus on Chemistry, 2021, 95(8), P. 1529–1536.
176. Artamonova O.V., Almyasheva O.V., Mittova I.Ya., Gusarov V.V. Sintering of nanopowders and properties of ceramics in the ZrO2–In2O3 system. Advanced Materials, 2009, 1, P. 91–94.
177. Khadidja Laziri, Amar Djemli, Djaida Redaoui, Foudil Sahnoune, Essebti Dhahri, S.F. Hassan, Nouari Saheb. Kinetics of formation, microstruc- ture, and properties of monolithic forsterite (Mg2SiO4) produced through solid-state reaction of nano-powders of MgO and SiO2. Ceramics International, 2024, 50(22), Part A, P. 45179–45188.
178. Zargar H.R., Bayati M.R., Rezaie H.R., Golestani-Fard F., Molaei R., Zanganeh S., Kajbafvala A. Influence of nano boehmite on solid state reaction of alumina and magnesia, J. Alloys and Compounds, 2010, 507(2), P. 443–447.
179. Gusarov V.V. Fast Solid-Phase Chemical Reactions. Russ. J. Gen. Chem., 1997, 67(12), P. 1846–1851.
180. Kirillova S.A., Panchuk V.V., Semenov V.G., Almjasheva O.V. Solid-phase interaction in the ZrO2–Fe2O3 nanocrystalline system. Nanosys.: Phys., Chem., Math., 2018, 9(6), P. 763–769.
181. Kingery W.D. Regelation, surface diffusion and ice sintering. J. Appl. Phys., 1960, 31(5), P. 883–838.
182. Jonson D.L. New method of obtaining volume, grain-boundary and surface diffusion coefficient from sintering data J. Appl. Phys., 1969, 40(1), P. 192–200.
183. Kingery W.D., Berg M. Study of initial stages of sintering solids by viscous flow, evaporation – condensation end self-diffusion. J. Appl. Phys., 1955, 26(10), P. 1205–1212.
184. Coble R.L. Diffusion model for hot pressing with surface energy and pressure effect as driving forces. J. Appl. Phys., 1970, 41(12), P. 4798–4807.
185. Fedorov P.P. Determination of annealing duration in the study of phase equilibria in the solid state of binary systems. Russ. J. Inorg. Chem., 1992, 37(8), P. 1891–1894. (in Russian).
Рецензия
Для цитирования:
Альмяшева О.В. Роль неавтономных фаз в формировании и трансформации твёрдофазных оксидных систем. Наносистемы: физика, химия, математика. 2024;15(6):755-767. https://doi.org/10.17586/2220-8054-2024-15-6-755-767
For citation:
Almjasheva O.V. The role of non-autonomous phases in the formation and transformation of solid-phase oxide systems. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):755-767. https://doi.org/10.17586/2220-8054-2024-15-6-755-767