Scandium modified zirconia extracted from red mud as a waste of alumina production
https://doi.org/10.17586/2220-8054-2024-15-6-768-773
Abstract
The total or partial utilization or recycling of bauxite processing waste (red mud) has the potential to reduce the harmful effect on the environment while simultaneously extracting the most valuable ingredient, scandium which is currently underutilized due to its high cost. The new efficient carbonation technology promises an assured supply of scandium and zirconium at a significantly reduced cost. Here, scandium-zirconium concentrate, extracted by hydrolysis from leachate after carbonate treatment of red mud, was subjected to sintering by ceramic technology at 1100◦C to produce scandia-stabilised zirconia (ScSZ). The XRD patterns demonstrate the successful doping of scandium into the zirconia lattice through the hydrolytic precipitation method. The ratio between the essential components of the functional ceramics Zr and Sc is approximately 4, which correlates with the doping level of ScSZ up to Zr0.8Sc0.2O1.9.
About the Authors
L. A. PasechnikRussian Federation
Liliya A. Pasechnik
Pervomayskaya, 91 Ekaterinburg 620108
I. S. Medyankina
Russian Federation
Irina S. Medyankina
Pervomayskaya, 91 Ekaterinburg 620108
D. I. Pereverzev
Russian Federation
Danil I. Pereverzev
Pervomayskaya, 91 Ekaterinburg 620108
A. Yu. Chufarov
Russian Federation
Alexander Yu. Chufarov
Pervomayskaya, 91 Ekaterinburg 620108
A. Yu. Suntsov
Russian Federation
Alexey Yu. Suntsov
Pervomayskaya, 91 Ekaterinburg 620108
References
1. Liu Q., Huang, S., He, A. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. J. Mater. Sci. Technol, 2019, 35, P. 2814–2823.
2. Vinchhi P., et al. Recent advances on electrolyte materials for SOFC: A review. Inorg. Chem. Commun., 2023, 152, 110724.
3. Soon G., et al. Review of zirconia-based bioceramic: Surface modification and cellular response. Ceram. Int., 2016, 42, P. 12543–12555.
4. Basahel S.N., et al. Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett., 2015, 10, 73.
5. Pushpalatha S., et al. Green synthesis of cellulose/ZrO2 nanocomposite: assessment of antibacterial and photocatalytic activity. Biomass Convers. Biorefinery, 2024.
6. Chitoria A.K., Mir A., Shah M.A. A review of ZrO2 nanoparticles applications and recent advancements. Ceram. Int., 2023, 49, P. 32343–32358.
7. Arifin N.A., et al. Characteristic and challenges of scandia stabilized zirconia as solid oxide fuel cell material – In depth review. Solid State Ion., 2023, 399, 116302.
8. Zamudio-Garc´ıa J., et al. Exploring alkali metal doping in solid oxide cells materials: A comprehensive review. Chem. Eng. J., 2024, 493, 152832.
9. Danilenko I., et al. Do smaller oxide particles sinter worse? Paradoxes of the initial stages of sintering of zirconia nanoparticles. Results Phys., 42, 2022, 106027.
10. Du Z., et al. Size effects and shape memory properties in ZrO2 ceramic micro- and nano-pillars. Scr. Mater., 2015, 101, P. 40–43.
11. Wang Y., et al. Failure analysis of fine-lamellar structured YSZ based thermal barrier coatings with submicro/nano-grains. Surf. Coat. Technol., 2017, 319, P. 95–103.
12. Sodeoka S., et al. Thermal and mechanical properties of ZrO2–CeO2 plasma-sprayed coatings. J. Therm. Spray Technol., 1997, 6, P. 361–367.
13. Chatterjee M., Naskar M.K., Ganguli D. Sol-emulsion-gel synthesis of alumina-zirconia composite microspheres. J. Sol-Gel Sci. Technol., 2003, 28, P. 217–225.
14. Liang S., et al. Scalable preparation of hollow ZrO2 microspheres through a liquid-liquid phase reunion assisted sol-gel method. Ceram. Int., 2020, 46, P. 14188–14194.
15. Falcony C., Aguilar-Frutis M.A., Garc´ıa-Hip´olito M. Spray pyrolysis technique; high-k dielectric films and luminescent materials: A Review. Micromachines, 2018, 9, 414.
16. Liu L., et al. Supercritical hydrothermal synthesis of nano-ZrO2: Influence of technological parameters and mechanism. J. Alloys Compd., 2022, 898, 162878.
17. Mosavari M., Khajehhaghverdi A., Mehdinavaz Aghdam R. Nano-ZrO2: A review on synthesis methodologies. Inorg. Chem. Commun., 2023, 157, 111293.
18. Buinachev S., et al. A new approach for the synthesis of monodisperse zirconia powders with controlled particle size. Int. J. Hydrog. Energy, 2021, 46, P. 16878–16887.
19. Pasechnik L.A., et al. High purity scandium extraction from red mud by novel simple technology. Hydrometallurgy, 202, 2021, 105597.
20. Chanturia V.A., Samusev A.L., Minenko V.G., Kozhevnikov G.A. Rare metal and rare earth recovery from silica gel-eudialyte concentrate leaching product. J. Min. Sci., 57, 2021, P. 1006–1013.
21. Vobenkaul D., et al. Hydrometallurgical processing of eudialyte bearing concentrates to recover rare earth elements via low-temperature dry digestion to prevent the silica gel formation. J. Sustain. Metall., 2017, 3, P. 79–89.
22. Pyagay I.N., et al. Carbonization processing of bauxite residue as an alternative rare metal recovery process. Tsvetnye Met., 2020, P. 56–63.
23. Xue Q., et al. Effects of Sc doping on phase stability of Zr1−xScxO2 and phase transition mechanism: First-principles calculations and Rietveld refinement. Mater. Des., 2017, 114, P. 297–302.
24. Nakajima H., et al. Effects of Fe doping on crystalline and optical properties of yttria-stabilized zirconia. J. Phys. Chem. Solids, 2007, 68, P. 1946– 1950.
25. Hassan A.A.E., et al. Influence of alumina dopant on the properties of yttria-stabilized zirconia for SOFC applications. J. Mater. Sci., 2002, 37, P. 3467–3475.
26. Rong T.J., et al. State of magnesia in magnesia (10.4 mol %)-doped zirconia powder prepared from coprecipitation. J. Am. Ceram. Soc., 2002, 85, P. 1324–1326.
27. Danilenko I., et al. Determination of the nature of the co-doping effect on the structure, mechanical properties and ionic conductivity of SOFC electrolyte based on YSZ. Solid State Ion., 2024, 412, 116581.
28. Flegler A.J., et al. Cubic yttria stabilized zirconia sintering additive impacts: A comparative study. Ceram. Int., 2014, 40, P. 16323–16335.
29. Hbaieb K., et al. Reducing sintering temperature of yttria stabilized zirconia through addition of lithium nitrate and alumina. Ceram. Int., 2012, 38, P. 4159–4164.
30. Zhang X., et al. Structural evolution of Al-modified PS-PVD 7YSZ TBCs in thermal cycling. Ceram. Int., 2019, 45 (6), P. 7560–7567.
31. Zhu D., et al. Furnace cyclic oxidation behavior of multicomponent low conductivity thermal barrier coatings. J. Therm. Spray Technol., 2004, 13, P. 84–92.
32. Fan W., et al. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications. J. Eur. Ceram. Soc., 2018, 38, P. 4502–4511.
33. Zu J.H., et al. Preparation and high-temperature performance of Sc2O3–Y2O3 co-stabilized ZrO2 thermal barrier coatings. Ceram. Int., 2024, 50, P. 20460–20472.
Review
For citations:
Pasechnik L.A., Medyankina I.S., Pereverzev D.I., Chufarov A.Yu., Suntsov A.Yu. Scandium modified zirconia extracted from red mud as a waste of alumina production. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):768-773. https://doi.org/10.17586/2220-8054-2024-15-6-768-773