Alumina and silica supported Ce–Fe–O systems obtained by the solution combustion method and their performance in CO2 hydrogenation to syngas
https://doi.org/10.17586/2220-8054-2023-14-6-679-689
Abstract
This study presents Ce–Fe–O systems supported on -Al2O3 or SiO2 to enhance the reactivity of an oxygen-deficient CeFeO3 perovskite phase, which are promising catalysts for the production of fuels and chemicals from CO2 as feedstock. The synthesis was carried out by the glycine-nitrate solution combustion method at various fuel-to-oxidizer ratios, and with or without the addition of ammonium nitrate. The obtained composites were characterized by XRD, SEM, EDX, N2-physisorption, H2-TPR, and CO2-TPD to study the relationship of physicochemical properties with catalytic CO2 hydrogenation (rWGS) activity. -Al2O3 was found to be a more suitable support than SiO2 due to its ability to form a higher content of the perovskite phase, significantly reduce the size of CeFeO3 crystallites, and increase oxygen defectiveness and CO2 adsorption capacity. Combustion in the presence of silica results in the binding of most of cerium into a silicate phase, which is inactive for rWGS.
Keywords
About the Authors
A. N. MatveyevaRussian Federation
Anna N. Matveyeva
Politekhnicheskaya st., 28, St.-Petersburg, 194021
Sh. O. Omarov
Russian Federation
Shamil O. Omarov
Politekhnicheskaya st., 28, St.-Petersburg, 194021
M. A. Gavrilova
Russian Federation
Marianna A. Gavrilova
Politekhnicheskaya st., 28, St.-Petersburg, 194021
Moskovskiy av., 26, St.-Petersburg, 190013
References
1. Mirzakhani S., Yin B.H., Masteri-Farahani M., Yip A.C.K. Heterogeneous catalytic systems for carbon dioxide hydrogenation to value-added chemicals. ChemPlusChem, 2023, 88 (7), e202300157.
2. Malik F.R., Yuan H.B., Moran J.C., Tippayawong N. Overview of hydrogen production technologies for fuel cell utilization. JESTECH, 2023, 43, 101452.
3. Ebrahimi P., Kumar A., Khraisheh M. A review of CeO2 supported catalysts for CO2 reduction to CO through the reverse water gas shift reaction. Catalysts, 2022, 12 (10), 1101.
4. Zhu M., Ge Q., Zhu X. Catalytic reduction of CO2 to CO via reverse water gas shift reaction: Recent advances in the design of active and selective supported metal catalysts. Transactions of Tianjin University, 1234, 26, P. 172–187.
5. Charisiou N.D., Polychronopoulou K., Asif A., Goula M.A. The potential of glycerol and phenol towards H2 production using steam reforming reaction: A review. Surf. Coat. Technol., 2018, 352, P. 92–111.
6. Roslan N.A., Abidin S.Z., Ideris A., Vo D.V.N. A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions. Int. J. Hydrogen Ener., 2020, 45 (36), P. 18466–18489.
7. Adeniyi A.G., Ighalo J.O. A review of steam reforming of glycerol. Chem. Pap., 2019, 73 (11), P. 2619–2635.
8. Falkowski P., Scholes R.J., Boyle E., Canadell J., Canfield D., Elser J., Gruber N., Hibbard K., H¨ogberg P., Linder S., Mackenzie F.T., Moore B., Pedersen T., Rosenthal Y., Seitzinger S., Smetacek V., Steffen W. The global carbon cycle: A test of our knowledge of earth as a system. Science, 2000, 290 (5490), P. 291–296.
9. Mathew T., Saju S., Raveendran S.N. Survey of heterogeneous catalysts for the CO2 reduction to CO via reverse water gas shift. In: Engineering solutions for CO2 conversion. John Wiley & Sons, Ltd, 2021, P. 281–316.
10. Wang Y., Winter L.R., Chen J.G., Yan B. CO2 hydrogenation over heterogeneous catalysts at atmospheric pressure: from electronic properties to product selectivity. Green Chem., 2021, 23 (1), P. 249–267.
11. Li F., Zhan H., Zhao N., Xiao F. Copper-based perovskite design and its performance in CO2 hydrogenation to methanol. In: Perovskite materials – Synthesis, characterisation, properties, and applications. IntechOpen, Rijeka, 2016.
12. Lindenthal L., Popovic J., Rameshan R., Huber J., Schrenk F., Ruh T., Nenning A., L¨offler S., Opitz A.K., Rameshan C. Novel perovskite catalysts for CO2 utilization – Exsolution enhanced reverse water-gas shift activity. Appl. Catal. B, 2021, 292, 120183.
13. Chen X., Chen Y., Song C., Ji P., Wang N., Wang W., Cui L. Recent advances in supported metal catalysts and oxide catalysts for the reverse water-gas shift reaction. Front. Chem., 2020, 8.
14. Neagu D., Tsekouras G., Miller D.N., M´enard H., Irvine J.T.S. In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem., 2013, 5 (11), P. 916–923.
15. Hou Y., Wang X., Chen M., Gao X., Liu Y., Guo Q. Sr1-xKxFeO3 perovskite catalysts with enhanced RWGS reactivity for CO2 hydrogenation to light olefins. Atmosphere (Basel), 2022, 13 (5), 760.
16. Ma L.H., Gao X.H., Zhang J.L., Ma J.J., Hu X. De, Guo Q.J. Effects of metal doping on the catalytic performance of LaFe-based perovskites for CO2 hydrogenation to light olefins. J. of Fuel Chemistry and Technology, 2023, 51 (1), P. 101–110.
17. Han Kim D., Layng Park J., Ji Park E., Dok Kim Y., Uhm S. Dopant effect of barium zirconate-based perovskite-type catalysts for the intermediatetemperature reverse water gas shift reaction. ACS Catal., 2014, 4 (9), P. 3117–3122.
18. Zhang J., Wang Y., Tian J., Yan B. Cu/LaFeO3 as an efficient and stable catalyst for CO2 reduction: Exploring synergistic effect between Cu and LaFeO3. AIChE Journal, 2022, 68 (6), P. 1–11.
19. Daza Y.A., Maiti D., Hare B.J., Bhethanabotla V.R., Kuhn J.N. More Cu, more problems: Decreased CO2 conversion ability by Cu-doped La0:75Sr0:25FeO3 perovskite oxides. Surf. Sci., 2016, 648, P. 92–99.
20. Matveyeva A.N., Omarov Sh.O., Gavrilova M.A., Sladkovskiy D.A., Murzin D.Yu. CeFeO3–CeO2–Fe2O3 systems: Synthesis by solution combustion method and catalytic performance in CO2 hydrogenation. Materials, 2022, 15 (22), 7970.
21. Bachina A., Ivanov V.A., Popkov V.I. Peculiarities of LaFeO3 nanocrystals formation via glycine-nitrate combustion. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (5), P. 647–653.
22. Popkov V.I., Tugova E.A., Bachina A.K., Almyasheva O. V. The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides. Russ. J. Gen. Chem., 2017, 87 (11), P. 2516–2524.
23. Popkov V.I., Almjasheva O.V, Panchuk V.V, Semenov V.G., Gusarov V.V. The role of pre-nucleus states in formation of nanocrystalline yttrium orthoferrite. Doklady Chemistry, 2016, 471 (2), P. 356–359.
24. Popkov V.I., Almjasheva O. V. Yttrium orthoferrite YFeO3 nanopowders formation under glycine-nitrate combustion conditions. Russ. J. Appl. Chem., 2014, 87 (2), P. 167–171.
25. Popkov V.I., Almjasheva O.V., Nevedomskiy V.N., Sokolov V.V., Gusarov V.V. Crystallization behavior and morphological features of YFeO3 nanocrystallites obtainedby glycine-nitrate combustion. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (6), P. 866–874.
26. Cam T.S., Omarov S., Trofimuk A., Lebedev V., Panchuk V., Semenov V., Nguyen A.T., Popkov V. Foam-like Ce–Fe–O-based nanocomposites as catalytic platforms for efficient hydrogen oxidation in air. J. of Science: Advanced Materials and Devices, 2023, 8 (3), 100596.
27. Choong C.E., Park C.M., Chang Y.Y., Yang J. kyu, Kim J.R., Oh S.E., Jeon B.-H., Choi E.H., Yoon Y., Jang M. Interfacial coupling perovskite CeFeO3 on layered graphitic carbon nitride as a multifunctional Z-scheme photocatalyst for boosting nitrogen fixation and organic pollutants demineralization. Chem. Eng. J., 2022, 427, 131406.
28. Robbins M.,Wertheim G.K., Menth A., Sherwood R.C. Preparation and properties of polycrystalline cerium orthoferrite (CeFeO3). J. Phys. Chem. Solids, 1969, 30 (7), P. 1823–1825.
29. Ameta J., Kumar A., Ameta R., Sharma V.K., Ameta S.C. Synthesis and characterization of CeFeO3 photocatalyst used in photocatalytic bleaching of gentian violet. J. of the Iranian Chemical Society, 2009, 6 (2), P. 293–299.
30. Pandya H.N., Kulkarni R.G., Parsania P.H. Study of cerium orthoferrite prepared by wet chemical method. Mater. Res. Bull., 1990, 25 (8), P. 1073– 1077.
31. Surendran A., Gupta N.K., Aziz F., Kushwaha K.K. Synthesis and characterization of Ce–Fe composite nanoparticles via sol–gel method. J. of Nano- and Electronic Physics, 2020, 12 (1).
32. Opuchovic O., Kreiza G., Senvaitiene J., Kazlauskas K., Beganskiene A., Kareiva A. Sol-gel synthesis, characterization and application of selected sub-microsized lanthanide (Ce, Pr, Nd, Tb) ferrites. Dyes and Pigments, 2015, 118, P. 176–182.
33. Matveyeva A.N., Omarov S.O., Gavrilova M.A., Trofimuk A.D., W¨arna J., Murzin D.Yu. CeO2-supported Ni and Co catalysts prepared by a solution combustion method for H2 production from glycerol: the effect of fuel/oxidizer ratio and oxygen excess. Catal. Sci. Technol., 2023, 13 (18), P. 5387–5406.
34. Seroglazova A.S., Lebedev L.A., Chebanenko M.I., Sklyarova A.S., Buryanenko I. V., Semenov V.G., Popkov V.I. Ox/Red-controllable combustion synthesis of foam-like PrFeO3 nanopowders for effective photo-Fenton degradation of methyl violet. Adv. Powder Technol., 2022, 33 (2), 103398.
35. Omarov Sh.O., Martinson K.D., Matveyeva A.N., Chebanenko M.I., Nevedomskiy V.N., Popkov V.I. Renewable hydrogen production via glycerol steam reforming over Ni/CeO2 catalysts obtained by solution combustion method: The effect of Ni loading. Fuel Process. Technol., 2022, 236, 107429.
36. Uzunoglu A., Kose D.A., Stanciu L.A. Synthesis of CeO2-based core/shell nanoparticles with high oxygen storage capacity. Int. Nano. Lett., 2017, 7 (3), P. 187–193.
37. Siddique F., Gonzalez-Cortes S., Mirzaei A., Xiao T., Rafiq M.A., Zhang X. Solution combustion synthesis: the relevant metrics for producing advanced and nanostructured photocatalysts. Nanoscale, 2022, 14 (33), P. 11806–11868.
38. Deganello F., Tyagi A.K. Solution combustion synthesis, energy and environment: Best parameters for better materials. Progr. Cryst. Growth Charact. Mater., 2018, 64 (2), P. 23–61.
39. Zaboeva E.A., Izotova S.G., Popkov V.I. Glycine-nitrate combustion synthesis of CeFeO3-based nanocrystalline powders. Russ. J. Appl. Chem., 2016, 89 (8), P. 1228–1236.
40. A. Voskanyan A., Chan K.-Y., Vanessa Li C.-Y. Colloidal solution combustion synthesis: Toward mass production of a crystalline uniform mesoporous CeO2 catalyst with tunable porosity. Chem. Mater., 2016, 28 (8), P. 2768–2775.
41. Deganello F., Testa M.L., La Parola V., Longo A., Tavares A.C. LaFeO3-based nanopowders prepared by a soft–hard templating approach: the effect of silica texture. J. Mater. Chem. A, 2014, 2 (22), P. 8438–8447.
42. Manukyan V.K., Chen Y.-S., Rouvimov S., Li P., Li X., Dong S., Liu X., Furdyna J.K., Orlov A., Bernstein G.H., Porod W., Roslyakov S., Mukasyan A.S. Ultrasmall -Fe2O3 superparamagnetic nanoparticles with high magnetization prepared by template-assisted combustion process. J. Phys. Chem. C, 2014, 118 (29), P. 16264–16271.
43. Scholz J., Etter M., Haas D., Meyer A., Kornowski A., Sazama U., Mascotto S. Pore geometry effect on the synthesis of silica supported perovskite oxides. J. Colloid. Interface. Sci., 2017, 504, P. 346–355.
44. Yu T.F., Chang C.W., Chung P.W., Lin Y.C. Unsupported and silica-supported perovskite-type lanthanum manganite and lanthanum ferrite in the conversion of ethanol. Fuel Process. Technol., 2019, 194, P. 106117.
45. Yuan Y., Liu C., Zhang Y., Shan X. Sol–gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template. Mater. Chem. Phys., 2008, 112 (1), P. 275–280.
46. Peng K., Fu L., Yang H., Ouyang J. Perovskite LaFeO3/montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep., 2016, 6 (1), 19723.
47. Wang K., Niu H., Chen J., Song J., Mao C., Zhang S., Gao Y. Immobilizing LaFeO3 nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance. Appl. Surf. Sci., 2017, 404, P. 138–145.
48. Hare B.J., Maiti D., Daza Y.A., Bhethanabotla V.R., Kuhn J.N. Enhanced CO2 conversion to CO by silica-supported perovskite oxides at low temperatures. ACS Catal., 2018, 8 (4), P. 3021–3029.
49. Hare B.J., Maiti D., Ramani S., Ramos A.E., Bhethanabotla V.R., Kuhn J.N. Thermochemical conversion of carbon dioxide by reverse water-gas shift chemical looping using supported perovskite oxides. Catal. Today, 2019, 323, P. 225–232.
50. Kharlamova T.S., Urazov Kh.Kh., Vodyankina O.V. Effect of modification of supported V2O5/SiO2 catalysts by lanthanum on the state and structural peculiarities of vanadium. Kinet. Catal., 2019, 60 (4), P. 465–473.
51. Gonz´alez-Cort´es S.L., Imbert F.E. Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. A Gen., 2013, 452, P. 117–131.
52. Bertaut F., Forrat F. Sur les deformations dans les perovskites `a base de terres rares et d’elements de transition trivalents. J. de Physique et le Radium, 1956, 17 (2), P. 129–131.
53. Shannon R.D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst., 1976, 32, 751.
54. Janbutrach Y., Hunpratub S., Swatsitang E. Ferromagnetism and optical properties of La1-xAlxFeO3 nanopowders. Nanoscale Res. Lett., 2014, 9 (1), 498.
55. Ahmed M.A., Okasha N., Hussein B. Synthesis, characterization and studies on magnetic and electrical properties of LaAlyFe1-yO3 nanomultiferroic. J. Alloys Compd., 2013, 553, P. 308–315.
56. Yang F., Yang X., Su K., Lin J., He Y., Lin Q. Structural and magnetic properties of perovskite functional nanomaterials La1-xRxFeO3 (R = Co, Al, Nd, Sm) obtained using sol-gel. Molecules, 2023, 28 (15), 5745.
57. Penilla E.H., Sellappan P., Duarte M.A., Wieg A.T., Wingert M.C., Garay J.E. Bulk polycrystalline ceria–doped Al2O3 and YAG ceramics for high-power density laser-driven solid-state white lighting: Effects of crystallinity and extreme temperatures. J. Mater. Res., 2020, 35 (8), P. 958–971.
58. Farahmandjou M., Khodadadi A., Yaghoubi M. Low concentration iron-doped alumina (Fe/Al2O3) nanoparticles using co-precipitation method. J. Supercond. Nov. Magn., 2020, 33 (11), P. 3425–3432.
59. Thommes M., Kaneko K., Neimark A. V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem., 2015, 87 (9–10), P. 1051–1069.
60. Zhong C., Yang Y., Fang Y., Chen J., Feng B., Wang H., Luo W., Yao Y. Insights into the enhanced hydrogen adsorption on M/La2O3 (M = Ni, Co, Fe). Phys. Chem. Chem. Phys., 2023, 25 (22), P. 15547–15554.
61. Carraro P.M., Sapag K., Oliva M.I., Eimer G.A. Comparative study of hydrogen storage on metal doped mesoporous materials. Chem. Phys. Lett., 2018, 701, P. 93–97.
Review
For citations:
Matveyeva A.N., Omarov Sh.O., Gavrilova M.A. Alumina and silica supported Ce–Fe–O systems obtained by the solution combustion method and their performance in CO2 hydrogenation to syngas. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(6):679-689. https://doi.org/10.17586/2220-8054-2023-14-6-679-689