Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Phase formation and thermal analysis in the LaPO4–GdPO4–H2O system

https://doi.org/10.17586/2220-8054-2024-15-6-781-792

Abstract

Structural transformations of nanocrystals in the LaPO4–GdPO4–(H2O) system under hydrothermal conditions at 230 C were studied depending on the duration of isothermal holding (2 hours, 3 days, and 5 days). It has been shown that a phase with the rhabdophane-like structure, La1−xGdxPO4*nH2O (0.00≤ x ≤1.00), exhibits a weighted average crystallite size of 4–7 nm and crystallizes in the system prior to hydrothermal treatment. As a result of hydrothermal treatment, samples in the LaPO4–GdPO4–(H2O) system are completely transformed into a phase with a monazite structure within five days, with the slowest transfor- mation observed for gadolinium orthophosphate. It was found that nanoparticles with a rhabdophane structure, GdPO4*nH2O, possess a single-crystal structure. The thermal analysis data indicated that the samples obtained via the precipitation method contain an X-ray amorphous phase and impurity compounds. The onset temperature of the structural transformation from rhabdophane to monazite, as well as the number of water molecules in the rhabdophane-like structure, depends on the chemical composition of the compound, particularly with regard to the isomorphic substitution of lanthanum cations with gadolinium cations.

About the Authors

M. O. Enikeeva
Ioffe Institute; Branch of Petersburg Nuclear Physics Institute named after B. ˙P. Konstantinov of National Research Centre “Kurchatov Institute” – Institute of Silicate Chemistry
Russian Federation

Maria O. Enikeeva

194021 St. Petersburg

199034, St. Petersburg



K. A. Zhidomorova
Branch of Petersburg Nuclear Physics Institute named after B. ˙P. Konstantinov of National Research Centre “Kurchatov Institute” – Institute of Silicate Chemistry; St. Petersburg State Institute of Technology
Russian Federation

Kseniya A. Zhidomorova

199034, St. Petersburg

190013, St. Petersburg



D. P. Danilovich
St. Petersburg State Institute of Technology
Russian Federation

Dmitriy P. Danilovich

190013, St. Petersburg



V. N. Nevedomskiy
Ioffe Institute
Russian Federation

Vladimir N. Nevedomskiy

194021 St. Petersburg



O. V. Proskurina
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation

Olga V. Proskurina

194021 St. Petersburg

190013, St. Petersburg



V. V. Gusarov
Ioffe Institute
Russian Federation

Victor V. Gusarov

194021 St. Petersburg



References

1. Feng R., Qi Y., Liu S., Cui L., Dai Q., Bai C. Production of renewable 1,3-pentadiene over LaPO4 via dehydration of 2,3-pentanediol derived from 2,3-pentanedione. Applied Catalysis A: General, 2022, 633, P. 118514.

2. Lohmann R., Cousins I.T., DeWitt J.C., Gl¨uge J., Goldenman G., Herzke D., Lindstrom A.B., Miller M.F., Ng C.A., Patton S., Scheringer M., Trier X., Wang Z. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS? Environmental Science & Technology, 2020, 54(20), P. 12820–12828.

3. Zhang Y.F., Dai B., Zhao D., Zhang D.H., Xu M.X., He X.H., Chen C. Promotion Effect of PrPO4 for Hydrogenation Transformation of Biomass- derived Compounds over Pr-Ni-P Composites. Materials Advances, 2021, 2(12), P. 3927–3939.

4. Majhi K.C., Yadav M. Facile hydrothermal synthesis of rare earth phosphate for boosting hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47(30), P. 14092–14103.

5. Liu D., Wang J., Wang J., Liu K., Wen J., Xu J., Jiang P. Temperature dependences of phase composition, densification, and thermal/chemical stability of Sr0.5Zr2(PO4)3-Nd0.5Sm0.5PO4 composite ceramics for nuclear waste form. Journal of the European Ceramic Society, 2024, 44(16), P. 116806.

6. Vance E.R., Zhang Y., McLeod T., Davis J. Actinide valences in xenotime and monazite. Journal of Nuclear Materials, 2011, 409(3), P. 221–224.

7. Thust A., Hirsch A., Hauss¨uhl E., Schrodt N., Loison L., Schott P., Peters L., Roth G., Winkler B. Physical properties and microstructures of La1−xPrxPO4 monazite-ceramics. Physics and Chemistry of Minerals, 2018, 45, P. 323–332.

8. Burakov B.E., Yagovkina M.A., Zamoryanskaya M.V., Petrova M.A., Domracheva Y.V., Kolesnikova E.V., Nikolaeva L.D., Garbuzov V.M., Kitsay A.A., Zirlin V.A. Behavior of Actinide Host-Phases Under Self-irradiation: Zircon, Pyrochlore, Monazite, and Cubic Zirconia Doped with Pu-238. In: Krivovichev, S.V. (eds) Minerals as Advanced Materials I. Springer, Berlin, Heidelberg, 2008.

9. Bermudez S., Rojas J.V. Tunable X-ray-induced luminescence in lanthanide-doped LaPO4 nanoparticles. Ceramics International, 2024, 50(9) Part 1, P. 16076–16087.

10. Wu J., Wu B., Wang Q., Liu Z., Hu Y., Feng F., Li J., Zhang X., Xie R. Tuning and high temperature fluorescence properties of LaPO4:Sm3+ nanophosphors. Optical Materials, 2024, 153, P. 115556.

11. Ouertani G., Maciejewska K., Piotrowski W., Horchani-Naifer K., Marciniak L., Ferhi M. High thermal stability of warm white emitting single phase GdPO4: Dy3+/ Sm3+ phosphor for UV excited wLEDs. Journal of Luminescence, 2024, 265, P. 120228.

12. Orekhova K., Burakov B., Silantieva E., Kitsay A., Popova T., Yagovkina M., Zamoryanskaya M. Synthesis and cathodoluminescence of YPO4 and LuPO4 single crystals activated with Er3+. Journal of Alloys and Compounds, 2023, 968, P. 171961.

13. Correcher V., Boronat C., Garcia-Guinea J., Benavente J.F., Rivera-Montalvo T. Thermoluminescence characterization of natural and synthetic irradiated Ce-monazites. Journal of Rare Earths, 2024, 42(4), P. 643–650.

14. Hikichi Y., Ota T., Hattori T. Thermal, mechanical and chemical properties of sintered monazite-(La, Ce, Nd or Sm). Mineralogical Journal, 1997, 19(3), P. 123–130.

15. Zhao Z., Chen H., Xiang H., Dai F.-Z., Wang X., Peng Z., Zhou Y. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3. Journal of Materials Science & Technology, 2019, 35(12), P. 2892–2896.

16. Du A., Wan C., Qu Z., Wu R., Pan W. Effects of Texture on the Thermal Conductivity of the LaPO4 Monazite. Journal of the American Ceramic Society, 2010, 93(9), P. 2822–2827.

17. Enikeeva M.O., Proskurina O.V., Motaylo E.S., Gusarov V.V. The influence of condition of the monazite structured La0.9Y0.1PO4 nanocrystals sintering on thermal and mechanical properties of the material. Nanosystems: physics, chemistry, mathematics, 2021, 12(6), P. 799–807.

18. Dacheux N., Clavier N., Podor R. Versatile Monazite: Resolving geological records and solving challenges in materials science. Monazite as a promising long-term radioactive waste matrix: Benefits of high-structural flexibility and chemical durability. American Mineralogist, 2013, 98(5-6), P. 833–847.

19. Van Hoozen C.J., Gysi A.P., Harlov D.E. The solubility of monazite (LaPO4, PrPO4, NdPO4, and EuPO4) endmembers in aqueous solutions from 100 to 250? ˚ C. Geochimica et Cosmochimica Acta, 2020, 280, P. 302–316.

20. Mikhailov D.A., Potanina E.A., Orlova A.I., Nokhrin A.V., Boldin M.S., Belkin O.A., Sakharov N.V., Skuratov V.A., Kirilkin N.S., Chuvil’deev V.N. Radiation Resistance and Hydrolytic Stability of Y0.95Gd0.05PO4-Based Ceramics with the Xenotime Structure. Inorganic Materials, 2021, 57, P. 760–765.

21. Gysi A.P., Harlov D. Hydrothermal solubility of TbPO4, HoPO4, TmPO4, and LuPO4 xenotime endmembers at pH of 2 and temperatures between 100 and 250 ◦C. Chemical Geology, 2021, 567, P. 120072.

22. Lender T., Murphy G., Bazarkina E., Bukaemskiy A., Gilson S., Henkes M., Hennig C., Kaspor A., Marquardt J., Nießen J., Peters L., Poonoosamy J., Rossberg A., Svitlyk V., Kvashnina K.O., Huittinen N. Investigation of Radiation Damage in the Monazite-Type Solid Solution La1−xCexPO4. Inorganic Chemistry, 2024, 63(38), P. 17525–17535.

23. Nasdala L., Akhmadaliev S., Burakov B.E., Chanmuang N C., ˇSkoda R. The absence of metamictisation in natural monazite. Scientific Reports, 2020, 10, P. 14676.

24. Hikichi Y., Nomura T. Melting Temperatures of Monazite and Xenotime. Journal of the American Ceramic Society, 1987, 70(10), P. 252–253.

25. Bondar I.A., Mezentseva L.P. Single crystals of rare-earth oxides: Constitution and properties. Progress in Crystal Growth and Characterization, 1988, 16, P. 81–141.

26. Enikeeva M.O., Proskurina O.V., Gusarov V.V. Phase Diagram and Metastable Phases in the LaPO4–YPO4–(H2O) System. Russian Journal of Inorganic Chemistry, 2024.

27. Gysi A.P., Hurtig N.C., Juan Han H., Kindall E.C., Guo X., Kulik D.A., Dan Miron G. Reaction calorimetry and structural crystal properties of non-ideal binary rhabdophane solid solutions (Ce1−xREExPO4 · nH2O). Geochimica et Cosmochimica Acta, 2024.

28. Qin D., Mesbah A., Gausse C., Szenknect S., Dacheux N., Clavier N. Incorporation of thorium in the rhabdophane structure: Synthesis and characterization of Pr1−2xCaxThxPO4·nH2O solid solutions. Journal of Nuclear Materials, 2017, 492, P. 88–96.

29. Monjid A.El., Szenknect S., Mesbah A., Hunault M.O.J.Y., Menut D., Clavier N., Dacheux N. Incorporation of U(iv) in monazite–cheralite ceramics under oxidizing and inert atmospheres. Dalton Transactions, 2024, 53, P. 2252–2264.

30. Zhao X., Wang W., Teng Y., Li Y., Ma X., Liu Y., Ahuja R., Luo W., Zhang Z. Incorporation of Th4+ and Sr2+ into Rhabdophane/Monazite by Wet Chemistry: Structure and Phase Stability. Inorganic Chemistry, 2023, 62(38), P. 15605–15615.

31. Chong S., J. Riley B., Lu X., Du J., Mahadevan T., Hegdec V. Synthesis and properties of anhydrous rare-earth phosphates, monazite and xenotime: a review. RSC Advances, 2024, 14, P. 18978–19000.

32. Rafiuddin M.R., Guo S., Donato G., Grosvenor A.P., Dacheux N., Cava R.J., Mesbah A. Structural and magnetic properties of churchite-type REPO4·2H2O materials. Journal of Solid State Chemistry, 2022, 312, P. 123261.

33. Rafiuddin M.R., Tyagi C., Haq M.A. Synthesis and structural investigation of churchite-type REPO4·2H2O (RE = Y, Gd, Dy) nanocrystals. Journal of Solid State Chemistry, 2022, 311, P. 123150.

34. Enikeeva M.O., Proskurina O.V., Gerasimov E.Yu., Nevedomskiy V.N., Gusarov V.V. Synthesis under hydrothermal conditions and structural transformations of nanocrystals in the LaPO4-YPO4-(H2O) system. Nanosystems: physics, chemistry, mathematics, 2023, 14(6), P. 660–671.

35. Bamforth T.G., Xia F., Putnis A., Brugger J., Hu S.-Y., Roberts M.P., Suvorova A., Pring A. Hydrothermal mineral replacement in the apatite- rhabdophane-monazite system: Experiments, reaction mechanisms and geological implications. Chemical Geology, 2024, 666, P. 122307.

36. Subramani T., Rafiuddin M.R., Shelyug A., Ushakov S., Mesbah A., Clavier N., Qin D., Szenknect S., Elkaim E., Dacheux N., Navrotsky A. Synthesis, Crystal Structure, and Enthalpies of Formation of Churchite-type REPO4·2H2O (RE = Gd to Lu) Materials. Crystal Growth & Design, 2019, 19(8), P. 4641–4649.

37. Kohlmann M., Sowa H., Reithmayer K., Schulz H., Kr¨uger R.-R., Abriel W. Structure of a Y1−x(Gd,Dy,Er)xPO4·2H2O microcrystal using synchrotron radiation. Acta Crystallographica section C, 1994, C50, P. 1651–1652.

38. Ivashkevich L.S., Lyakhov A.S., Selevich A.F. Preparation and structure of the yttrium phosphate dihydrate YPO4·2H2O. Phosphorus Research Bulletin, 2013, 28, P. 45–50.

39. Roncal-Herrero T., Rodr´ıguez-Blanco J.D., Oelkers E.H., Benning L.G. The direct precipitation of rhabdophane (REEPO4 · nH2O) nano-rods from acidic aqueous solutions at 5–100 ◦C. Journal of Nanoparticle Research, 2011, 13, P. 4049–4062.

40. Khalili R., Larsson A.-C., Telkki V.-V., Lantto P., Kantola A.M. Local structures of rare earth phosphate minerals by NMR. Journal of Solid State Chemistry, 2022, 311, P. 123097.

41. Mesbah A., Clavier N., Elkaim E., Gausse C., Ben Kacem I., Szenknect S., Dacheux N. Monoclinic Form of the Rhabdophane Compounds: REEPO4·0.667H2O. Crystal Growth & Design, 2014, 14(10), P. 5090–5098.

42. Shelyug A., Mesbah A., Szenknect S., Clavier N., Dacheux N., Navrotsky A. Thermodynamics and Stability of Rhabdophanes, Hydrated Rare Earth Phosphates REPO4·nH2O. Frontiers in Chemistry, 2018, 6(604), P. 1–25.

43. Enikeeva M.O., Yakovleva A.A., Proskurina O.V., Nevedomskiy V.N., Gusarov V.V. Phase formation under hydrothermal conditions and thermal transformations in the GdPO4-YPO4-H2O system. Inorganic Chemistry Communications, 2024, 159, P. 111777.

44. Mooney R.C.L. Crystal Structures of a Series of Rare Earth Phosphates. Journal of Chemical Physics, 1948, 16, P. 1003.

45. Mooney R.C.L. X-ray diffraction study of cerous phosphate and related crystals. I. Hexagonal modification. Acta Crystallographica, 1950, 3, P. 337–340.

46. Enikeeva M.O., Proskurina O.V., Levin A.A., Smirnov A.V., Nevedomskiy V.N., Gusarov V.V. Structure of Y0.75La0.25PO4·0.67H2O rhabdo- phane nanoparticles synthesized by the hydrothermal microwave method. Journal of Solid State Chemistry, 2023, 319, P. 123829.

47. Weiss H., Br¨au M. F. How Much Water Does Calcined Gypsum Contain? Angewandte Chemie International Edition, 2009, 48(19), P. 3520–3524.

48. Duran E.C., Rafiuddin M.R., Shen Y., Hunt S.A., Haq Mirc A., Eggemana A.S. 3D electron diffraction studies of synthetic rhabdophane (DyPO4 · nH2O). Acta Crystallographica section C, 2024, 81, Part 10, P. 612–619.

49. Hikichi Y., Murayama K., Ohsato H., Nomura T. Thermal Changes of Rare Earth Phosphate Minerals. Journal of the Mineralogical Society of Japan, 1990, 19(3), P. 117–126.

50. Hikichi Y., Ota T., Hattori T., Imaeda T. Synthesis and thermal reactions of rhabdophane-(Y). Mineralogical Journal, 1996, 18(3), P. 87–96.

51. Boakye E.E., Mogilevsky P., Hay R.S. Synthesis of Nanosized Spherical Rhabdophane Particles. Journal of the American Ceramic Society, 2005, 88(10), P. 2740–2746.

52. Vanetsev A.S., Samsonova E.V., Gaitko O.M., Keevend K., Popov A.V., M¨aeorg U., M¨andar H., Sildos I., Orlovskii Yu.V. Phase composition and morphology of nanoparticles of yttrium orthophosphates synthesized by microwave-hydrothermal treatment: The influence of synthetic conditions. Journal of Alloys and Compounds, 2015, 639, P. 415–421.

53. Kijkowska R. Thermal decomposition of lanthanide orthophosphates synthesized through crystallisation from phosphoric acid solution. Ther- mochimica Acta, 2003, 404(1-2), P. 81–88.

54. Lucas S., Champion E., Bernache-Assollant D., Leroy G. Rare earth phosphate powders RePO4 · nH2O (Re=La, Ce or Y) II. Thermal behavior. Journal of Solid State Chemistry, 2004, 177(4-5), P. 1312–1320.

55. Jonasson R.G., Vance E.R. DTA study of the rhabdophane to monazite transformation in rare earth (La-Dy) phosphates. Thermochimica Acta, 1986, 108, P. 65–72.

56. Ochiai A., Utsunomiya S. Crystal Chemistry and Stability of Hydrated Rare-Earth Phosphates Formed at Room Temperature. Minerals, 2017, 7(5), P. 84.

57. Mesbah A., Clavier N., Elkaim E., Szenknect S., Dacheux N. In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO. 40.667H2O to the hexagonal LnPO4 (Ln = Nd, Sm, Gd, Eu and Dy). Journal of Solid State Chemistry, 2017, 249, P. 221–227.

58. J. Livage, ”Vers une chimie ´ecologique. Quand l’air et l’eau remplacent le p´etrole”, Le Monde, 1977.

59. Skogareva L.S., Kottsov S.Yu., Shekunova T.O., Baranchikov A.E., Ivanova O.S., Yapryntsev A.D., Ivanov V.K. Selective precipitation of rare earth orthophosphates with hydrogen peroxide from phosphoric acid solutions. Russian Journal of Inorganic Chemistry, 2017, 62, P. 1141–1146.

60. Elovikov D.P., Nikiforova K.O., Tomkovich M.V., Proskurina O.V., Gusarov V.V. The pH value influence on the waylandite-structured BiAl3(PO4)2(OH)6 compound formation under hydrothermal conditions. Inorganica Chimica Acta, 2024, 561, P. 121856.

61. Khrapova E.K., Ivanova A.A., Kirilenko D.A., Levin A.A., Bert N.A., Ugolkov V.L., Krasilin A.A. Phase transformations of (CoxMg1−x)3Si2O5(OH)4 phyllosilicate nanoscrolls upon heating in Ar, O2 and H2 containing atmospheres. Applied Clay Science, 2024, 250, P. 107282.

62. Rietveld H.M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, 2, P. 65–71.

63. Anfimova T., Li Q., Jensen J.O., Bjerrum N.J. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates. International Journal of Electrochemical Science, 2014, 9(5), P. 2285-2300.

64. Maslennikova T.P., Osipov A.V., Mezentseva L.P., Drozdova I.A., Kuchaeva S.K., Ugolkov V.L., Gusarov V.V. Synthesis, mutual solubility, and thermal behavior of nanocrystals in the LaPO4-YPO4-H2O system. Glass Physics and Chemistry, 2010, 36, P. 351–357.

65. Patra C.R., Gabashvili A., Patra S., Jacob D.S., Gedanken A., Landaua A., Gofer Y. Microwave approach for the synthesis of rhabdophane-type lanthanide orthophosphate (Ln = La, Ce, Nd, Sm, Eu, Gd and Tb) nanorods under solvothermal conditions. New Journal of Chemistry, 2005. 29(5), P. 733–739.

66. Zhao X., Teng Y., Li Y., Zheng X., Zheng Q., Ma R., Liu G., Liu Y., Ahuja R., Luo W. Response of Nd3+ and Sm3+ precipitating into rhabdophane and the leaching mechanism of associated monazite ceramics. Journal of the American Ceramic Society, 2022, 106(2), P. 1287–1298.


Supplementary files

1. Supplementary material
Subject
Type Other
Download (447KB)    
Indexing metadata ▾

Review

For citations:


Enikeeva M.O., Zhidomorova K.A., Danilovich D.P., Nevedomskiy V.N., Proskurina O.V., Gusarov V.V. Phase formation and thermal analysis in the LaPO4–GdPO4–H2O system. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):781-792. https://doi.org/10.17586/2220-8054-2024-15-6-781-792

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)