Highly dispersed anti-Stokes phosphors based on KGd2F7:Yb,Er single-phase solid solutions
https://doi.org/10.17586/2220-8054-2024-15-5-702-709
Abstract
The possibility of doping the KGd2F7 matrix with ytterbium and erbium ions by introducing yttrium ions with a concentration of 25 mol.% was confirmed and the conditions were determined for the synthesis of anti-Stokes phosphors based on single-phase KGd2F7:Yb,Er solid solutions. The dependences were revealed of the sizes of coherent scattering regions, crystal lattice parameters, and energy yield of luminescence on the temperature and duration of heat treatment. Heat treatment conditions were determined to ensure the achievement of intense anti-Stokes luminescence. As a result, effective phosphors KGd2F7:Yb (20.0 mol.%),Er (4.0 mol.%) with an energy yield of up-conversion luminescence of 3.80 % were developed. Disordering of the crystal structure (transition from cubic to tetragonal modification) at a temperature of 600 ◦C was recorded, corresponding to the rule of Ostwald steps.
Keywords
About the Authors
Anna S. ZakharovaRussian Federation
Anna S. Zakharova
Moscow
Sergey V. Kuznetsov
Russian Federation
Sergey V. Kuznetsov
Moscow
Alexander A. Alexandrov
Russian Federation
Alexander A. Alexandrov
Moscow
Daria V. Pominova
Russian Federation
Daria V. Pominova
Moscow
Valery V. Voronov
Russian Federation
Valery V. Voronov
Moscow
Pavel P. Fedorov
Russian Federation
Pavel P. Fedorov
Moscow
Vladimir K. Ivanov
Russian Federation
Vladimir K. Ivanov
Moscow
References
1. Kumar A., Prakash Tiwari S., Swart H.C., da Silva J.C.G.E. Infrared interceded YF3:Er3+/Yb3+ upconversion phosphor for crime scene and anti-counterfeiting applications. Optical Materials, 2019, 92, P. 347–351.
2. Maturi F.E., Brites C.D.S., Silva R.R., Nigoghossian K., Wilson D., Ferreira R.A.S., Ribeiro S.J.L., Carlos L.D. Sustainable smart tags two-step verification for anticounterfeiting triggered by the photothermal response of upconverting nanoparticles. Advanced Photonics Research, 2021, 3, #2100227.
3. Han X., Song E., Zhou B., Zhang Q. Color tunable upconversion luminescent perovskite fluoride with long-/short-lived emissions toward multiple anti-counterfeiting. J. of Materials Chemistry C, 2019, 7, #8226.
4. Xie S., Gong G., Song Y., Tan H., Zhang C., Li N., Zhang Y., Xu L., Xu J., Zheng J. Design of novel lanthanide-doped core-shell nanocrystals with dual up-conversion and down-conversion luminescence for anti-counterfeiting printing. Dalton Transactions, 2019, 48, P. 6971–6983.
5. Cui E., Xing G., Yuan X., Zhang Y., Artizzu F., Liao X., Tang J., Zhao Y., Zhao P., Liu K., Liu J. Simultaneously excited downshifting/upconversion luminescence from lanthanide-doped core-shell lead-free perovskite nanocrystals for encryption and data storage. Advanced Functional Materials, 2024, 8, P. 2173–2180.
6. Suo H., Zhu Q., Zhang X., Chen B., Chen J., Wang F. High-security anti-counterfeiting through upconversion luminescence. Materials Today Physics, 2021, 21, #100520.
7. Liu J., Rijckaert H., Zeng M., Haustraete K., Laforce B., Vincze L., Van Driessche I., Kaszmaerek A.M., Van Deun R. Simultaneously from lanthanide-doped core/shell fluoride nanoparticles for multimode anticounterfeiting. Advanced Functional Materials, 2018, 28, #1707365.
8. Huang X. Broadband dye-sensitized upconversion: A promising new platform for future solar upconverter design. J. of Alloys Compounds, 2017, 690, P. 356–359.
9. Fischer S., Ivaturi A., Jakob P., Kramer K.W., Martin-Rodriges R., Meijerink A., Richards B.S., Golgschmidt J.C. Upconversion solar cell measurements under real sunlight. Optical Materials, 2018, 84, P. 389–395.
10. Ghazy A., Safdar M., Lastusaari M., Savin H., Karppinen M. Advances in upconversion enhanced solar cell performance. Solar Energy and Solar Cell, 2021, 320, #111234.
11. Fisher S., Favilla E., Tonelli M., Goldschmidt J.C. Record Efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaYF8:30%Er3+ upconverter. Solar Energy Materials and Solar Cell, 2015, 136, P. 127–134.
12. Wang F., Banerjee D., Liu Y., Chen X., Liu X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst, 2010, 135, P. 1839–1854.
13. Liu Q., Feng W., Li F. Water-soluble lanthanide upconversion nanophosphors: Synthesis and bioimaging applications in vivo. Coordination Chemistry Reviews, 2014, 273, P. 100–110.
14. Tse W.H., Chen L., McCurdy C.M., Tarapaski C.M., Chronik B.A., Zhang J. Development of biocompatible NaGdF4:Er3+,Yb3+ upconversion nanoparticles used as contrast agents for bio-imaging. The Canadian J. of Chemical Engineering, 2019, 97, P. 2678–2684.
15. Min Y., Li J., Liu F., Padmanabhan P., Yeow E.K.L., Xing B. Recent advance of biological molecular imaging based on lanthanide-doped upconversion-luminescent nanomaterials. Nanomaterials, 2014, 4, P. 129–154.
16. Du P., Luo L., Huang X., Yu J.S.. Ultrafast synthesis of bifunctional Er3+/Yb3+-codoped NaBiF4 upconverting nanoparticles for nanothermometer and optical heater. J. of Colloid and Interface Science, 2018, 514, P. 172–181.
17. Du P., Luo L., Yu J.S. Low-temperature thermometry based on upconversion emission of Ho/Er-codoped Ba0.77Ca0.23TiO3 ceramics. J. of Alloys and Compounds, 2015, 632, P. 73–77.
18. Zhou S., Jiang S., Wei X., Chen Y., Duan C.-K., Yin M. Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4. J. of Alloys and Compounds, 2014, 588, P. 654–657.
19. Suo H., Zhao X., Zhang Z., Li T., Goldys E.M., Guo C. Constructing Multiform Morphologies of YF: Er3+/Yb3+ Up-conversion Nano/Microcrystals towards Sub-tissue Thermometry. Chemical Engineering J., 2017, 313, P. 65–73.
20. Manciniak L., Prorok K., Frances-Soriano L., Perez-Prieto J., Bernarkiewicz A. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer. Nanoscale, 2016, 8, P. 5037–5042.
21. Ryszczynska K., Trejgis K., Marciniak L., Grzyb T. Upconverting SrF2:Er3+ Nanoparticles for Optical Temperature Sensors. Applied Nano Materials, 2021, 4, P. 10438–10448.
22. Woidsky J., Sander I., Schau A., Moesslein J., Wendler P., Wacker D., Gao G., Kirchenbauer D., Kumar V., Busko D., Howard I.A., Richards B.S., Turshakov A., Wiethoff S., Lang-Koetz C. Inorganic fluorescent marker materials for identification of post-consumer plastic packaging. Resources, Conservation and Recycling, 2020, 161, #104976.
23. Howard I.A., Busko D., Gao G., Wendler P., Madirov E., Turshakov A., Moesslein J., Richards B.S. Sorting plastics for a circular economy: Perspectives for lanthanide luminescent markers. Resources, Conservation and Recycling, 2024, 205, #107557.
24. Wang F., Deng R., Liu X.. NaYF4:Yb,Er/NaYF4 Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield. Nature Protocols, 2014, 9, P. 1634–1644.
25. Klier D.T., Kumke M.U. Upconversion Luminescence Properties of NaYF4:Yb:Er Nanoparticles Codoped with Gd3+. The J. of Physical Chemistry C, 2015, 119, P. 3363–3373.
26. He L., Zou X., He X., Lei F., Jiang N., Zheng Q., Xu C., Liu Y., Lin D. Reducing Grain Size and Enhancing Luminescence of NaYF4:Yb3+,Er3+ Upconversion Materials. Crystal Growth and Design, 2018, 18, P. 808–817.
27. Yi G. Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence. Advanced Functional Materials, 2006, 16, P. 2324–2329.
28. Wang L., Li Y. Controlled Synthesis and Luminescence of Doped NaYF4 Nanocrystals. Chemistry of Materials, 2007, 19, P. 727–734.
29. Cheng Q., Sui J., Cai W. Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions. Nanoscale, 2012, 4, P. 779–784.
30. Maurya S.K., Kushawaha R., Tiwari S.P., Kumar A., Kumar K., Esteves da Silva J.C.G. Thermal decomposition mediated Er3+/Yb3+ codoped NaGdF4 upconversion phosphor for optical thermometry. Materials Research Express, 2019, 6, #086211.
31. Saleta Reig D., Grauel B., Konyushkin V.A., Nakladov A.N., Fedorov P.P., Brusko D., Howard I.A., Richards B.S., Resch-Genger U., Kuznetsov S.V., Turshakov A., Wurth C. Upconversion properties of SrF2:Yb3+,Er3+ single crystals. J. of Materials Chemistry C, 2020, 8, P. 4093–4101.
32. Pak A.M., Ermakova J.A., Kuznetsov S.V., Ryabova A.V., Pominova D.V., Voronov V.V. Efficient visible range SrF2:Yb:Er− and SrF2:Yb:Tmbased up-conversion luminophores. J. of fluorine chemistry, 2017, 194, P. 16–22.
33. Rozhnova Yu.A., Kuznetsov S.V., Luginina A.A., Voronov V.V., Ryabova A.V., Pominova D.V., Ermakov R.P., Usachev V.A., Kononenko N.E., Baranchikov A.E., Ivanov V.K., Fedorov P.P. New Sr1−x−zRx(NH4)zF2+x−z (R=Yb, Er) solid solution as precursor for high efficiency upconversion luminophor and optical ceramics on the base of strontium fluoride. Materials Chemistry and Physics, 2016, 172, P. 150–157.
34. Ermakova J.A., Madirov E.I., Fedorov P.P., Alexandrov A.A., Kuznetsov S.V. Effect of the fluorinating agent type (NH4F, NaF, KF) on the particle size and emission properties of SrF2:Yb:Er luminophores. Mat. Chem. C, 2024, 12, P. 1406–1411.
35. Madirov E., Kuznetsov S.V., Konyushkin V.A., Nakladov A.N., Fedorov P.P., Bergfeldt Th., Hudry D., Busko D., Howard I.A., Richards B.S., Turshtov A. Effect of Yb3+ and Er3+ concentration on upconversion luminescence of co-doped BaF2 single crystals. J. Mater. Chem. C, 2021, 9, P. 3493–3503.
36. Karbowiak M., Mech A., Bednarkiewicz A., Strek W. Structural and luminescent properties of nanostructured KGdF4:Eu3+ synthesised by coprecipitation method. J. Alloys Comp., 2004, 380, P. 321–326.
37. Alexandrov A.A., Mayakova M.N., Kuznetsov S.V., Voronov V.V., Pominova D.V., Ivanov V.K., Fedorov P.P. Effect of Structural Perfection of Crystalline β-NaYF4:Er3+,Yb3+ Phosphor Powders on the Efficiency of Their Upconversion Luminescence. Inorganic Materials, 2022, 58 (1), P. 90–96.
38. Zakharova A.S., Alexandrov A.A., Pominiva D.V., Fedorov P.P., Kuznetsov S.V., Ivanov V.K. Synthesis of KGd2F7:Yb:Er luminophores by co-precipitation from aqueous solutions. J. of Structural Chemistry, 2024, 65, P. 138–148.
39. Gredin P., Labeguerie J., Pierrard A., Vaulay M.-J., de Kozak A.R.D. Synthesis and structural characterization of K0.33Gd0.67F2.33(KGd2F7) and K0.31Gd0.69F1.84O0.27. Solis State Science, 2004, 6, P. 1221–1228.
40. Ostwald W. Studien uber die Bildung und Umwandlung fester K ¨ orper. ¨ Zeitschrift fur Physikalische Chemie ¨ , 1897, 22, P. 289–330.
41. Fedorov P.P. Systems of alkali and rare-earth metal fluorides. Russian J. Inorg. Chem., 1999, 44 (11), P.1703–1727.
42. Le Fur Y., Aleonard S., Gorius M.F., Roux M.T. Structure crystalline de K0.265Gd0.735F2.47. Z. Krist., 1988, 182, P. 281–290.
43. Timofeeva E., Orlovskaya E., Popov A., Shaidulin A., Kuznetsov S., Alexandrov A., Uvarov O., Vainer Y., Silaev G., Rahn M., Tamm A., ¨ Fedorenko S., Orlovskii Y. The Infuence of Medium on Fluorescence Quenching of Colloidal Solution of the Nd3+:LaF3 Nanoparticles Prepared with HTMW treatment. Nanomaterials, 2022, 12, 3749.
44. Fedorov P.P., Kuznetsov S.V., Osiko V.V. Elaboration of Nanofluorides and Ceramics for Optical and Laser Applications. Photonic and Electronic Properties of Fluoride Materials, 2016, P. 7–31.
Review
For citations:
Zakharova A.S., Kuznetsov S.V., Alexandrov A.A., Pominova D.V., Voronov V.V., Fedorov P.P., Ivanov V.K. Highly dispersed anti-Stokes phosphors based on KGd2F7:Yb,Er single-phase solid solutions. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(5):702-709. https://doi.org/10.17586/2220-8054-2024-15-5-702-709