Surface topology, electrophysical properties and formation mechanism of tin(ii) sulfide thin films
https://doi.org/10.17586/2220-8054-2023-14-6-699-704
Abstract
Photosensitive nanocrystalline SnS films with a size of coherent X-ray scattering regions of about 30 nm were obtained by chemical bath deposition. It has been demonstrated that the deposition time affects significantly both microstructure and thickness of the film as well as the size of the particles’ agglomerates forming the film. The current sensitivity of the obtained films was studied. All synthesized films, regardless of the duration of synthesis, reveal p-type conductivity due to Sn vacancies. Atomic force microscopy measurements and fractal approach provide a detailed description of the processes occurring during film formation. The characteristics of the fabricated SnS films are potentially useful for design of advanced absorbing layers within thin film solar cells.
Keywords
About the Authors
N. S. KozhevnikovaRussian Federation
Ekaterinburg
L. N. Maskaeva
Russian Federation
Ekaterinburg
A. N. Enyashin
Russian Federation
Ekaterinburg
A. P. Tyutyunnik
Russian Federation
Ekaterinburg
O. A. Lipina
Russian Federation
Ekaterinburg
I. O. Selyanin
Russian Federation
Ekaterinburg
V. F. Markov
Russian Federation
Ekaterinburg
References
1. Brent J.R., Lewis D.J., Lorenz T., Lewis E.A., Savjani N., Haigh S.J., Seifert G., Derby B., O’Brien P. Tin(II) Sulfide (SnS) Nanosheets by Liquid-Phase Exfoliation of Herzenbergite: IV-VI Main Group Two-Dimensional Atomic Crystals. J. Am. Chem. Soc., 2015, 137(39), P. 12689–12696.
2. Banai R.E., Horn M.W., Brownson J.R.S. A review of tin(II) monosulfide and its potential as a photovoltaic absorber. Solar Energy Materials & Solar Cells, 2016, 150, P. 112–129.
3. Sinsermsuksakul P., Heo J., Noh W., Hock A.S., Gordon R.G. Atomic layer deposition of tin monosulfide thin films. Adv. Energy Mater., 2011, 1, P. 1116–1125.
4. Reddy K.T.R., Reddy N.K., Miles R.W. Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells, 2006, (90), P. 3041–3046.
5. Garc´ıa A., Papior N., Akhtar A., Artacho E., Blum V., Bosoni E., Brandimarte P., Brandbyge M., Cerd´a J.I., Corsetti F., Cuadrado R., Dikan V., Ferrer J., Gale J., Garc´ıa-Fern´andez P., Garc´ıa-Su´arez V.M., Garc´ıa S., Huhs G., Illera S., Koryt´ar R., Koval P., Lebedeva I., Lin L., L´opez-Tarifa P., Mayo S.G., Mohr S., Ordej´on P., Postnikov A., Pouillon Y., Pruneda M., Robles R., S´anchez-Portal D., Soler J.M., Ullah R., Yu V.W., Junquera J.J. Siesta: Recent developments and applications. J. Chem. Phys., 2020, 152, P. 204108.
6. Titova L.V., Fregoso B.M., Grimm R.L. Chapter 5: Group-IV monochalcogenides GeS, GeSe, SnS, SnSe, in book Chalcogenide: From 3D to 2D and Beyond. Woodhead Publishing Series in Electronic and Optical Materials, 2020, P. 119–151.
7. Vidal J., Lany S., d’Avezac M., Zunger A., Zakutaev A., Francis J., Tate J. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Applied Physics Letters, 2012, 100(3), P. 032104.
8. Roldughin V.I. Fractal structures in disperse systems. Russian Chemical Reviews, 2003, 72(10), P. 823–847.
9. Roldughin V.I. The characteristics of fractal disperse systems. Russian Chemical Reviews, 2003, 72(11), P. 913–937.
10. Samsonov V.M., Kuznetsova Y.V., D’yakova E.V. Fractal properties of aggregates of metal nanoclusters on solid surface. Russian Journal of Applied Physics, 2016, 86(2), P. 71–77.
11. Feder E. Fractals. Moscow: Mir, 1991, 260 p. (In Russian).
12. Smirnov B.M. Physics of fractal clusters. Moscow: Nauka, 1991. 136 p, (In Russian).
13. Antonov A.S., Sdobnyakov N.Y., Ivanov D.V., Podbolotov K.B. Morphology investigation study of the copper films relief on a mica surface. Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, 9, P. 19–26, (In Russian).
14. Sdobnyakov N.Y., Antonov A.S., Ivanov D.V. Morphological characteristics and fractal analysis of metal films on dielectric surfaces. Tver: Tver State University, 2019, 168 p, (In Russian).
15. Brylkin Y.V., Kustov A.L.Correlation between fractal dimension and different roughness for copper samples. Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2013, 5, P. 33–38, (In Russian).
16. Panin A.V., Shugurov A.R. Application of fractal description for image analysis in scanning probe microscopy. Poverkhnost [Surface], 2003, 6, P. 62–69, (In Russian).
Review
For citations:
Kozhevnikova N.S., Maskaeva L.N., Enyashin A.N., Tyutyunnik A.P., Lipina O.A., Selyanin I.O., Markov V.F. Surface topology, electrophysical properties and formation mechanism of tin(ii) sulfide thin films. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(6):699-704. https://doi.org/10.17586/2220-8054-2023-14-6-699-704