Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Planetary grinding’s impact on the structure and photocatalytic characteristics of urea-derived g-C3N4 nanocrystals

https://doi.org/10.17586/2220-8054-2023-14-6-705-712

Abstract

The burgeoning interest in two-dimensional materials derived from graphite carbon nitride (g-C3N4) stems from its non-toxicity, exceptional charge carrier mobility, and UV-vis absorption capabilities. Crucially, g-C3N4’s performance hinges on its specific surface area. We investigate how planetary grinding impacts the crystal and electronic structures of g-C3N4 nanocrystals. Six samples, subjected to varying durations of mechanical treatment, underwent comprehensive characterization using a complex of physico-chemical methods. Notably, planetary grinding substantially increases the specific surface area of g-C3N4 nanocrystals while preserving their electronic structure. Furthermore, we assessed the photocatalytic performance of these samples in decomposing antibiotics under visible light. The nanocrystalline powder with an enhanced specific surface area demonstrated a remarkable efficiency in tetracycline hydrochloride decomposition. In summary, our study highlights the potential of planetary grinding as a means to augment g-C3N4’s specific surface area, positioning it as a promising platform for the development of contemporary, eco-friendly photocatalysts.

About the Authors

M. I. Chebanenko
Ioffe Institute
Russian Federation

Maria I. Chebanenko

Politechnicheskaya, 26, St. Petersburg, 194021



L. A. Lebedev
Ioffe Institute
Russian Federation

Lev A. Lebedev

Politechnicheskaya, 26, St. Petersburg, 194021



M. I. Tenevich
Ioffe Institute
Russian Federation

Maksim I. Tenevich

Politechnicheskaya, 26, St. Petersburg, 194021



E. Yu. Stovpiaga
Ioffe Institute
Russian Federation

Ekaterina Yu. Stovpiaga

Politechnicheskaya, 26, St. Petersburg, 194021



V. I. Popkov
Ioffe Institute
Russian Federation

Vadim I. Popkov

Politechnicheskaya, 26, St. Petersburg, 194021



References

1. Caban M., Stepnowski P. How to Decrease Pharmaceuticals in the Environment? A Review. Environ. Chem. Lett., 2021, 19, P. 3115–3138.

2. Abdel S.M., Gad-allah T.A., El-Shahat M.F., Ashmawy A.M., Ibrahim H.S. Novel Application of Metal-Free Graphitic Carbon Nitride (g-C3N4) in Photocatalytic Reduction – Recovery of Silver Ions. J. of Environmental Chemical Engineering, 2016, 4, P. 4165–4172.

3. Sammut Bartolo N., Azzopardi L.M., Serracino-Inglott A. Pharmaceuticals and the Environment. Early Hum. Dev., 2021, 155, P. 39–42.

4. Paut Kusturica M., Jevtic M., Ristovski J.T. Minimizing the Environmental Impact of Unused Pharmaceuticals: Review Focused on Prevention. Front. Environ. Sci., 2022, 10, P. 1–8.

5. Rapti I., Kourkouta T., Malisova E.M., Albanis T., Konstantinou I. Photocatalytic Degradation of Inherent Pharmaceutical Concentration Levels in Real Hospital WWTP Effluents Using g-C3N4 Catalyst on CPC Pilot Scale Reactor. Molecules, 2023, 28 (3), 1170.

6. Song J., Zhao K., Yin X., Liu Y., Khan I.,Wang K. Photocatalytic Degradation of Tetracycline Hydrochloride with g-C3N4/Ag/AgBr Composites. Front. Chem., 2022, 10, 1069816.

7. Garc´ıa-L´opez E.I., Pomilla F.R., Bloise E., L¨u X., Mele G., Palmisano L., Marc`ı G. C3N4 Impregnated with Porphyrins as Heterogeneous Photocatalysts for the Selective Oxidation of 5-Hydroxymethyl-2-Furfural Under Solar Irradiation. Top. Catal., 2021, 64, P. 758–771.

8. Rodr´ıguez-Lo´pez L., Santa´s-Miguel V., Cela-Dablanca R., Nu´nez-Delgado A., A´ lvarez-Rodr´ıguez E., Pe´rez-Rodr´ıguez P., Arias-Este´vez M. Ciprofloxacin and Trimethoprim Adsorption/Desorption in Agricultural Soils. Int. J. Environ. Res. Public Health, 2022, 19 (14), 8426.

9. Seroglazova A.S., Chebanenko M.I., Popkov V.I. Synthesis, Structure, and Photo-Fenton Activity of PrFeO3–TiO2 Mesoporous Nanocomposites. Condens. Matter Interphases, 2021, 23, P. 548–560.

10. Zhurenok A.V., Vasichenko D.B., Berdyugin S.N., Gerasimov E.Yu., Saraev A.A., Cherepanova S.V., Kozlova E.A. Photocatalysts Based on Graphite-like Carbon Nitride with a Low Content of Rhodium and Palladium for Hydrogen Production under Visible Light. Nanomaterials, 2023, 13, 2176.

11. Gupta B.K., Kedawat G., Agrawal Y., Kumar P., Dwivedi J., Dhawan S.K. A Novel Strategy to Enhance Ultraviolet Light Driven Photocatalysis from Graphene Quantum Dots Infilled TiO2 Nanotube Arrays. RSC Adv., 2015, 5, P. 10623–10631.

12. Chebanenko M.I., Omarov S.O., Lobinsky A.A., Nevedomskiy V.N., Popkov V.I. Steam Exfoliation of Graphitic Carbon Nitride as Efficient Route toward Metal-Free Electrode Materials for Hydrogen Production. Int. J. Hydrogen Energy, 2023, 48, P. 27671–27678.

13. Rodionov I.A., Zvereva I.A. Photocatalytic Activity of Layered Perovskite-like Oxides in Practically Valuable Chemical Reactions. Russ. Chem. Rev., 2016, 85, P. 248–279.

14. Papailias I., Todorova N., Giannakopoulou T., Ioannidis N., Boukos N., Athanasekou C.P., Dimotikali D., Trapalis C. Chemical vs Thermal Exfoliation of g-C3N4 for NOx Removal under Visible Light Irradiation. Appl. Catal. B Environ., 2018, 239, P. 16–26.

15. Xu J., Zhang L., Shi R., Zhu Y. Chemical Exfoliation of Graphitic Carbon Nitride for Efficient Heterogeneous Photocatalysis. J. Mater. Chem. A, 2013, 1, P. 14766–14772.

16. Yuan Y.J., Shen Z., Wu S., Su Y., Pei L., Ji Z., Ding M., Bai W., Chen Y., Yu Z.T. Liquid Exfoliation of g-C3N4 Nanosheets to Construct 2D-2D MoS2/g-C3N4 Photocatalyst for Enhanced Photocatalytic H2 Production Activity. Appl. Catal. B Environ., 2019, 246, P. 120–128.

17. Chebanenko M.I., Zakharova N.V., Popkov V.I. Synthesis and Visible-Light Photocatalytic Activity of Graphite-like Carbon Nitride Nanopowders. Russ. J. Appl. Chem., 2020, 93, P. 494–501.

18. Chebanenko M.I., Zakharova N.V., Lobinsky A.A., Popkov V.I. Ultrasonic-Assisted Exfoliation of Graphitic Carbon Nitride and Its Electrocatalytic Performance in Process of Ethanol Reforming. Semiconductors, 2019, 53, P. 2072–2077.

19. Bokuniaeva A.O., Vorokh A.S. Estimation of Particle Size Using the Debye Equation and the Scherrer Formula for Polyphasic TiO2 Powder. J. Phys. Conf. Ser., 2019, 1410, 012057.

20. Qu D., Liu J., Miao X., Han M., Zhang H., Cui Z., Sun S., Kang Z., Fan H., Sun Z. Peering into Water Splitting Mechanism of g-C3N4-Carbon Dots Metal-Free Photocatalyst. Appl. Catal. B Environ., 2018, 227, P. 418–424.

21. Fina F., Callear S.K., Carins G.M., Irvine J.T.S. Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction. Chem. Mater., 2015, 27, P. 2612–2618.

22. Azizi-Toupkanloo H., Karimi-Nazarabad M., Shakeri M., Eftekhari M. Photocatalytic Mineralization of Hard-Degradable Morphine by Visible Light-Driven Ag@g-C3N4 Nanostructures. Environ. Sci. Pollut. Res., 2019, 26, P. 30941–30953.

23. Zhu B., Zhang L., Cheng B., Yu J. First-Principle Calculation Study of Tri-s-Triazine-Based g-C3N4: A Review. Appl. Catal. B Environ., 2018, 224, P. 983–999.


Review

For citations:


Chebanenko M.I., Lebedev L.A., Tenevich M.I., Stovpiaga E.Yu., Popkov V.I. Planetary grinding’s impact on the structure and photocatalytic characteristics of urea-derived g-C3N4 nanocrystals. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(6):705-712. https://doi.org/10.17586/2220-8054-2023-14-6-705-712

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)