Effect of triethanolamine and sodium hydroxide concentration on the activity of Pt/g- C3N4 catalyst in the reaction of photocatalytic hydrogen evolution under visible light irradiation
https://doi.org/10.17586/2220-8054-2023-14-6-713-718
Abstract
In this work, the dependences of the rate of photocatalytic hydrogen evolution under visible light irradiation on the concentration of triethanolamine and sodium hydroxide for 0.1 wt.% Pt/g-C3N4 photocatalyst were studied. The kinetic dependences of the reaction rate versus substrate initial concentration described by the Langmuir–Hinshelwood monomolecular model. Optimal initial conditions for highly efficient hydrogen evolution have been studied. It is shown that under such conditions the catalyst is a stable material in long-term experiments. The maximum rate of hydrogen evolution was 7.2 mmolg-1h-1.
About the Authors
K. O. PotapenkoRussian Federation
Ksenia O. Potapenko
Novosibirsk, 630090
E. A. Kozlova
Russian Federation
Ekaterina A. Kozlova
Novosibirsk, 630090
References
1. Zhu Q., Xu Z., Qiu B., Xing M., Zhang J. Emerging Cocatalysts on G-C3N4 for Photocatalytic Hydrogen Evolution. Small, 2021, 17, 2101070.
2. Bairrao D., Soares J., Almeida J., Franco J.F., Vale Z., Jiang B., Xie H., Zhou H., Wang K., Xin K., et al. Green Hydrogen and Energy Transition: Current State and Prospects in Portugal. Energies, 2023, 16, 551.
3. Lee C.C., Wang F., Lou R., Wang K. How Does Green Finance Drive the Decarbonization of the Economy? Empirical Evidence from China. Renew. Energy, 2023, 204, P. 671–684.
4. Singla M.K., Nijhawan P., Oberoi A.S. Hydrogen Fuel and Fuel Cell Technology for Cleaner Future: A Review. Environ. Sci. Pollut. Res., 2021, 28, P. 15607–15626.
5. Preethi V., Kanmani S. Photocatalytic Hydrogen Production. Mater. Sci. Semicond. Process., 2013, 16, P. 561–575.
6. Sharma R., Alm´aˇsi M., Nehra S.P., Rao V.S., Panchal P., Paul D.R., Jain I.P., Sharma A. Photocatalytic Hydrogen Production Using Graphitic Carbon Nitride (GCN): A Precise Review. Renew. Sustain. Energy Rev., 2022, 168, 112776.
7. Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J.M., Domen K., Antonietti M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater., 2008, 8, P. 76–80.
8. Fan Z., Guo X., Jin Z., Li X., Li Y. Bridging Effect of S-C Bond for Boosting Electron Transfer over Cubic Hollow CoS/g-C3N4 Heterojunction toward Photocatalytic Hydrogen Production. Langmuir, 2022, 38, P. 3244–3256.
9. Liu X., Zhang Q., Cui Z., Ma F., Guo Y., Wang Z., Liu Y., Zheng Z., Cheng H., Dai Y., et al. Morphology and Defects Design in G-C3N4 for Efficient and Simultaneous Visible-Light Photocatalytic Hydrogen Production and Selective Oxidation of Benzyl Alcohol. Int. J. Hydrogen Energy, 2022, 47, P. 18738–18747.
10. Maeda K., Wang X., Nishihara Y., Lu D., Antonietti M., Domen K. Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. J. Phys. Chem. C, 2009, 113, P. 4940–4947.
11. Cao S., Low J., Yu J., Jaroniec M. Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Adv. Mater., 2015, 27, P. 2150–2176.
12. Wen J., Xie J., Chen X., Li X. A Review on G-C3N4-Based Photocatalysts. Appl. Surf. Sci., 2017, 391, P. 72–123.
13. Zhurenok A.V., Vasilchenko D.B., Kozlova E.A. Comprehensive Review on G-C3N4-Based Photocatalysts for the Photocatalytic Hydrogen Production under Visible Light. Int. J. Mol. Sci., 2022, 24, 346.
14. Cao S., Yu J. G-C3N4-Based Photocatalysts for Hydrogen Generation. J. Phys. Chem. Lett., 2014, 5 (12), P. 2101-2107.
15. Liao G., Gong Y., Zhang L., Gao H., Yang G.J., Fang B. Semiconductor Polymeric Graphitic Carbon Nitride Photocatalysts: The “Holy Grail” for the Photocatalytic Hydrogen Evolution Reaction under Visible Light. Energy Environ. Sci., 2019, 12, P. 2080–2147.
16. Jones W., Martin D.J., Caravaca A., Beale A.M., Bowker M., Maschmeyer T., Hartley G., Masters A. A Comparison of Photocatalytic Reforming Reactions of Methanol and Triethanolamine with Pd Supported on Titania and Graphitic Carbon Nitride. Appl. Catal. B Environ., 2019, 240, P. 373–379.
17. Kumaravel V., Imam M.D., Badreldin A., Chava R.K., Do J.Y., Kang M., Abdel-Wahab A. Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catal., 2019, 9, 276.
18. Kozlova E.A., Parmon V.N. Heterogeneous Semiconductor Photocatalysts for Hydrogen Production from Aqueous Solutions of Electron Donors. Russ. Chem. Rev., 2017, 86, P. 870–906.
19. Li Y., Zhou M., Cheng B., Shao Y. Recent Advances in G-C3N4-Based Heterojunction Photocatalysts. J. Mater. Sci. Technol., 2020, 56, P. 1–17.
20. Zhu B., Xia P., Ho W., Yu J. Isoelectric Point and Adsorption Activity of Porous G-C3N4. Appl. Surf. Sci., 2015, 344, P. 188–195.
21. Vasilchenko D., Zhurenok A., Saraev A., Gerasimov E., Cherepanova S., Tkachev S., Plusnin P., Kozlova E. Highly Efficient Hydrogen Production under Visible Light over G-C3N4-Based Photocatalysts with Low Platinum Content. Chem. Eng. J., 2022, 445, 136721.
22. Vasilchenko D., Tkachenko P., Tkachev S., Popovetskiy P., Komarov V., Asanova T., Asanov I., Filatov E., Maximovskiy E., Gerasimov E., et al. Sulfuric Acid Solutions of [Pt(OH)4(H2O)2]: A Platinum Speciation Survey and Hydrated Pt(IV) Oxide Formation for Practical Use. Inorg. Chem., 2022, 61, P. 9667–9684.
23. Vasilchenko D., Topchiyan P., Tsygankova A., Asanova T., Kolesov B., Bukhtiyarov A., Kurenkova A., Kozlova E. Photoinduced Deposition of Platinum from (Bu4N)2[Pt(NO3)6] for a Low Pt-Loading Pt/TiO2 Hydrogen Photogeneration Catalyst. ACS Appl. Mater. Interfaces, 2020, 12, P. 48631–48641.
24. Vasilchenko D., Topchiyan P., Berdyugin S., Filatov E., Tkachev S., Baidina I., Komarov V., Slavinskaya E., Stadnichenko A., Gerasimov E. Tetraalkylammonium Salts of Platinum Nitrato Complexes: Isolation, Structure, and Relevance to the Preparation of PtOx/CeO2 Catalysts for Lowerature CO Oxidation. Inorg. Chem., 2019, 58, P. 6075–6087.
25. Kurenkova A.Y., Kozlova E.A., Kaichev V.V. The Influence of Reaction Conditions on the Rate of Hydrogen Evolution in Aqueous Solutions of Glycerol over Pt/TiO2 Photocatalysts. Kinet. Catal., 2021, 62, P. 62–67.
26. Li Y., Zhang K., Peng S., Lu G., Li S. Photocatalytic Hydrogen Generation in the Presence of Ethanolamines over Pt/ZnIn2S4 under Visible Light Irradiation. J. Mol. Catal. A Chem., 2012, 363–364, P. 354–361.
27. Chowdhury P., Gomaa H., Ray A.K. Sacrificial Hydrogen Generation from Aqueous Triethanolamine with Eosin Y-Sensitized Pt/TiO2 Photocatalyst in UV, Visible and Solar Light Irradiation. Chemosphere, 2015, 121, P. 54–61.
28. Markovskaya D.V., Kozlova E.A. Formal Kinetic Description of Photocatalytic Hydrogen Evolution from Ethanol Aqueous Solutions in the Presence of Sodium Hydroxide. Kinet. Catal., 2018, 59, P. 727–734.
29. Savateev O., Zou Y. Identification of the Structure of Triethanolamine Oxygenation Products in Carbon Nitride Photocatalysis. Chemistry Open, 2022, 11, e202200095.
30. Ghosh T., Das A., K¨onig B. Photocatalytic N-Formylation of Amines via a Reductive Quenching Cycle in the Presence of Air. Org. Biomol. Chem., 2017, 15, P. 2536–2540.
Review
For citations:
Potapenko K.O., Kozlova E.A. Effect of triethanolamine and sodium hydroxide concentration on the activity of Pt/g- C3N4 catalyst in the reaction of photocatalytic hydrogen evolution under visible light irradiation. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(6):713-718. https://doi.org/10.17586/2220-8054-2023-14-6-713-718