Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Molecular dynamics simulation of the rearrangement of polyampholyte conformations on the surface of a charged oblate metal nanospheroid in a microwave electric field

https://doi.org/10.17586/2220-8054-2023-14-6-719-728

Abstract

Using molecular dynamics, the rearrangement of the conformational structure of polyampholytes on the surface of a gold oblate nanospheroid in an alternating electric field was studied depending on the value of its total charge. On the surface of the nanospheroid, at its high total charge and at small amplitude of the alternating electric field strength vector, polyampholyte loops stretched over the entire surface of the nanospheroid. With an increase in the amplitude of the electric field in the equatorial region of the nanospheroid, an annular polyampholytic fringe was formed, ordered by the types of links depending on the distance to the polarization axis of the nanoparticle. In the case of high simulation temperature, the shape of the annular fringe changed twice over a period: in one case, ordering according to the types of links along the polarization axis of the nanospheroid, and in the other case, perpendicular to it.

About the Author

N. Yu. Kruchinin
Orenburg State University, Center of Laser and Informational Biophysics
Russian Federation

Nikita Yu. Kruchinin

Orenburg



References

1. Manikas A.C., Causa F., Moglie R.D., Netti P.A. Tuning gold nanoparticles interfaces by specific peptide interaction for surface enhanced raman spectroscopy (SERS) and separation applications. ACS Appl. Mater. Interfaces, 2013, 5(16), P. 7915–7922.

2. Miyazaki C.M., Martin C.S., Constantino C.J.L. Gold conjugated-magnetite nanoparticles for magnetic concentration towards reproducibility and repeatability of SERS measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 671, P. 131661.

3. Qiu M., Zheng S., Li P., Tang L., Xu Q., Weng S. Detection of 1-OHPyr in human urine using SERS with injection under wet liquid-liquid selfassembled films of -CD-coated gold nanoparticles and deep learning. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 290, P. 122238.

4. Zanetti-Polzi L., Charchar P., Yarovsky I., Corni S. Origins of the pH-Responsive photoluminescence of peptide-functionalized Au nanoclusters. ACS Nano, 2022, 16(12), P. 20129–20140.

5. Pradhan S.P., Swain S., Sa N., Pilla S.N., Behera A., Sahu P.K., Si S.C. Photocatalysis of environmental organic pollutants and antioxidant activity of flavonoid conjugated gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 282, P. 121699.

6. Natarajan P., Sukthankar P., Changstrom J., Holland C.S., Barry S., Hunter W.B., Sorensen C.M., Tomich J.M. Synthesis and characterization of multifunctional branched amphiphilic peptide bilayer conjugated gold nanoparticles. ACS Omega, 2018, 3(9), P. 11071–11083.

7. Wu T., Chen K., Lai W., Zhou H., Wen X., Chan H.F., Li M., Wang H., Tao Y. Bovine serum albumin-gold nanoclusters protein corona stabilized polystyrene nanoparticles as dual-color fluorescent nanoprobes for breast cancer detection. Biosensors and Bioelectronics, 2022, 215, P. 114575.

8. Mao M., Xie Z., Ma P., Peng C., Wang Z., Wei X., Liu G. Design and optimizing gold nanoparticle-cDNA nanoprobes for aptamer-based lateral flow assay: Application to rapid detection of acetamiprid. Biosensors and Bioelectronics, 2022, 207, P. 114114.

9. Li X., Mao X., Xie W., Liu B., Chen F. Intracellular biosynthesis of gold nanoparticles for monitoring microalgal biomass via surface-enhanced raman spectroscopy. ACS Sustainable Chem. Eng., 2022, 10(15), P. 4872–4880.

10. Zhang H., Wang Z., Wang F., Zhang Y., Wang H., Liu Y. In situ formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for highly sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal. Chem., 2020, 92(7), P. 5546–5553.

11. Zhang Y., Tan J., Zhou L., Shan X., Liu J., Ma Y. Synthesis and application of AS1411-functionalized gold nanoparticles for targeted therapy of gastric cancer. ACS Omega, 2020, 5(48), P. 31227–31233.

12. Shivashankarappa A., Sanjay K.R., Shah D., Tagat A. Decalepis hamiltonii derived gold nanoparticles and photodynamic cytotoxic evaluation on skin melanoma (B16F10) cells as an effective drug delivery vehicle. Journal of Drug Delivery Science and Technology, 2022, 76, P. 103766.

13. Farhadian N., Kazemi M.S., Baigi F.M., Khalaj M. Molecular dynamics simulation of drug delivery across the cell membrane by applying gold nanoparticle carrier: Flutamide as hydrophobic and glutathione as hydrophilic drugs as the case studies. Journal of Molecular Graphics and Modelling, 2022, 116, P. 108271.

14. Rajput P., Shishodia M.S. FRET sensing, and field enhancement near spheroidal nanoparticle: Multipole spectral expansion approach. Optics Communications, 2022, 519, P. 128391.

15. Lerm´e J., Bonnet C., Lebeault M., Pellarin M., Cottancin E. Surface plasmon resonance damping in spheroidal metal particles: quantum confinement, shape, and polarization dependences. J. Phys. Chem. C, 2017, 121(10), P. 5693–5708.

16. Pazos-Perez N., de Abajo F.J.G., Fery A., Alvarez-Puebla R.A. From nano to micro: synthesis and optical properties of homogeneous spheroidal gold particles and their superlattices. Langmuir, 2012, 28(24), P. 8909–8914.

17. Alsawafta M., Wahbeh M., Truong V. Plasmonic modes and optical properties of gold and silver ellipsoidal nanoparticles by the discrete dipole approximation. Journal of Nanomaterials, 2012, 2012, P. 457968.

18. Gomes B.S., Cantini E., Tommasone S., Gibson J.S., Wang X., Zhu Q., Ma J., McGettrick J.D., Watson T.M., Preece J.A., Kirkman-Brown J.C., Publicover S.J., Mendes P.M. On-demand electrical switching of antibody-antigen binding on surfaces. ACS Appl. Bio Mater., 2018, 1(3), P. 738–747.

19. Zhao J., Wang X., Jiang N., Yan T., Kan Z., Mendes P.M., Ma J. Polarization effect and electric potential changes in the stimuli-responsive molecular monolayers under an external electric field. J. Phys. Chem. C, 2015, 119(40), P. 22866–22881.

20. Cantini E., Wang X., Koelsch P., Preece J.A., Ma J., Mendes P.M. Electrically responsive surfaces: experimental and theoretical investigations. Acc. Chem. Res., 2016, 49(6), P. 1223–1231.

21. Ghafari A.M., Dom´ınguez S.E., J¨arvinen V., Gounani Z., Schmit A., Sj¨oqvist M., Sahlgren C., Salo-Ahen O.M.H., Kvarnstr¨om C., Torsi L., O¨ sterbacka R. In situ coupled electrochemical-goniometry as a tool to reveal conformational changes of charged peptides. Advanced Materials Interfaces, 2022, 9, P. 2101480.

22. Kruchinin N.Yu., Kucherenko M.G. Molecular dynamics simulation of the conformational structure of polyampholyte polypeptides at the surface of a charged gold nanoparticle in external electric field. Polymer Science Series A, 2023, 65(2), P. 224–233.

23. Kruchinin N.Yu., Kucherenko M.G. Rearrangements in the conformational structure of polyampholytic polypeptides on the surface of a uniformly charged and polarized nanowire: molecular dynamics simulation. Surfaces and Interfaces, 2021, 27, P. 101517.

24. Kruchinin N.Yu., Kucherenko M.G. Molecular dynamics simulation of conformational rearrangements in polyelectrolyte macromolecules on the surface of a charged or polarized prolate spheroidal metal nanoparticle. Colloid Journal, 2021, 83(5), P. 591–604.

25. Kruchinin N.Yu., Kucherenko M.G. Statistical and molecular-dynamics simulation of electrically induced changes in the conformational structure of polyampholytes on the surface of a flattened metal nanospheroid. Colloid Journal, 2022, 84(2), P. 169–182.

26. Kucherenko M.G., Kruchinin N.Yu., Neyasov P.P. Modeling of conformational changes of polyelectrolytes on the surface of a transversely polarized metal nanowire in an external electric field. Eurasian Physical Technical Journal, 2022, 19(2), P. 19–29.

27. Kruchinin N.Yu., Kucherenko M.G. Molecular dynamics simulation of the conformational structure of uniform polypeptides on the surface of a polarized metal prolate nanospheroid with varying pH. Russian Journal of Physical Chemistry A, 2022, 96(3), P. 624–632.

28. Kruchinin N.Yu., Kucherenko M.G., Neyasov P.P. Modeling conformational changes in uniformly charged polyelectrolytes on the surface of a polarized metallic oblate nanospheroid. Russian Journal of Physical Chemistry A, 2022, 96(12), P. 2718–2728.

29. Kruchinin N.Yu., Kucherenko M.G. Modeling the conformational rearrangement of polyampholytes on the surface of a prolate spheroidal metal nanoparticle in alternating electric field. High Energy Chemistry, 2021, 55(6), P. 442–453.

30. Kruchinin N.Yu., Kucherenko M.G. Conformational changes in polyampholyte macrochains on the surface of an oblate metallic nanospheroid in alternating electric field. High Energy Chemistry, 2022, 56(6), P. 499–510.

31. Kruchinin N.Yu., Kucherenko M.G. Rearrangements in the conformational structure of polyelectrolytes on the surface of a flattened metal nanospheroid in an alternating electric field. Colloid Journal, 2023, 85(1), P. 44–58.

32. Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kal´e L., Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem., 2005, 26, P. 1781–1802.

33. MacKerell Jr. A.D., Bashford D., Bellott M., Dunbrack Jr. R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher W.E., Roux B., Schlenkrich M., Smith J.C., Stote R., Straub J., Watanabe M., Wi´orkiewicz-Kuczera J., Yin D., Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B., 1998, 102(18), P. 3586–3616.

34. Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubm¨uller H., MacKerell Jr. A.D. CHARMM36m: an improved force field for folded and intrinsically dis-ordered proteins. Nature Methods, 2016, 14, P. 71–73.

35. Heinz H., Vaia R.A., Farmer B.L., Naik R.R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials. J. Phys. Chem. C, 2008, 112(44), P. 17281–17290.

36. Jia H., Zhang Y., Zhang C., Ouyang M., Du S. Ligand-ligand-interaction-dominated self-assembly of gold nanoparticles at the oil/water interface: an atomic-scale simulation. J. Phys. Chem. B, 2023, 127(10), P. 2258–2266.

37. Cappabianca R., De Angelis P., Cardellini A., Chiavazzo E., Asinari P. Assembling biocompatible polymers on gold nanoparticles: toward a rational design of particle shape by molecular dynamics. ACS Omega, 2022, 7(46), P. 42292–42303.

38. Xiong Q., Lee O., Mirkin C.A., Schatz G. Ethanol-induced condensation and decondensation in DNA-linked nanoparticles: a nucleosome-like model for the condensed state. Journal of the American Chemical Society, 2023, 145(1), P. 706–716.

39. Wei X., Harazinska E., Zhao Y., Zhuang Y., Hernandez R. Thermal transport through polymer-linked gold nanoparticles. The Journal of Physical Chemistry C, 2022, 126(43), P. 18511–18519.

40. Yokoyama K., Thomas J., Ardner W., Kieft M., Neuwirth L.S., Liu W. An approach for in-situ detection of gold colloid aggregates amyloid formations within the hippocampus of the Cohen’s Alzheimer’s disease rat model by surface enhanced raman scattering methods. Journal of Neuroscience Methods, 2023, 393, P. 109892.

41. Wang X., Ham S., Zhou W., Qiao R. Adsorption of rhodamine 6G and choline on gold electrodes: a molecular dynamics study. Nanotechnology, 2023, 34, P. 025501.

42. Darden T., York D., Pedersen L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, P. 10089–10092.

43. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79, P. 926–935.

44. Chen Y., Cruz-Chu E.R., Woodard J.C., Gartia M.R., Schulten K., Liu L. Electrically induced conformational change of peptides on metallic nanosurfaces. ACS Nano, 2012, 6, P. 8847–8856.

45. Mahinthichaichan P., Tsai C., Payne G.F., Shen J. Polyelectrolyte in electric field: disparate conformational behavior along an aminopolysaccharide chain. ACS Omega, 2020, 5, P. 12016–12026.

46. Si W., Yu M., Wu G., Chen C., Sha J., Zhang Y., Chen Y. A nanoparticle-DNA assembled nanorobot powered by charge-tunable quad-nanopore system. ACS Nano, 2020, 14, P. 15349–15360.

47. Shankla M., Aksimentiev A. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged grapheme. Nature Communications, 2014, 5, P. 5171.

48. Chen P., Zhang Z., Gu N., Ji M. Effect of the surface charge density of nanoparticles on their translocation across pulmonary surfactant monolayer: a molecular dynamics simulation. Molecular Simulation, 2018, 44, P. 85–93.

49. Landau L.D., Pitaevskii L.P., Lifshitz E.M. Electrodynamics of Continuous Media, 2nd Edition, Elsevier Ltd., 1984, 460 p.


Review

For citations:


Kruchinin N.Yu. Molecular dynamics simulation of the rearrangement of polyampholyte conformations on the surface of a charged oblate metal nanospheroid in a microwave electric field. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(6):719-728. https://doi.org/10.17586/2220-8054-2023-14-6-719-728

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)