Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis and research of physical and chemical properties of InGaZn2O5 prepared by nitrate-glycolate gel decomposition method

https://doi.org/10.17586/2220-8054-2024-15-6-806-813

Abstract

Indium-gallium-zinc oxide InGaZn2O5 was synthesized by nitrate-glycolate gel decomposition method using ethylene glycol as a complexing and chelating agent. In this work, SEM, EDS and UV-visdiffusion spectra of IGZO were obtained. InGaZn2O5 optical band gap was found using Kubelka–Munk transformation. The morphology of the particles was examined: at low sintering temperatures many micro-meter particles are observed, the sample is heterogeneous in crystalline state. At annealing temperatures above 800˚C a single-phase crystalline structure is observed.

About the Authors

E. S. Anannikov
Moscow Institute of Physics and Technology
Russian Federation

Egor S. Anannikov

Institutsky lane, 9, Dolgoprudny, 141701



T. A. Markin
Moscow Institute of Physics and Technology
Russian Federation

Timofey A. Markin

Institutsky lane, 9, Dolgoprudny, 141701



I. A. Solizoda
Moscow Institute of Physics and Technology; St. Petersburg State University; Tajik National University
Tajikistan

Ibrohimi A. Solizoda

Institutsky lane, 9, Dolgoprudny, 141701

Universitetskaya embankment, 7–9, 199034, St. Petersburg

Rudaki Av., 17, Dushanbe, 734025



G. M. Zirnik
Moscow Institute of Physics and Technology
Russian Federation

Gleb M. Zirnik

Institutsky lane, 9, Dolgoprudny, 141701



D. A. Uchaev
South Ural State University
Russian Federation

Daniil A. Uchaev

Lenin Av., 76, Chelyabinsk, 454080



A. S. Chernukha
Moscow Institute of Physics and Technology; St. Petersburg State University; South Ural State University
Russian Federation

Alexander S. Chernukha

Institutsky lane, 9, Dolgoprudny, 141701

Universitetskaya embankment, 7–9, 199034, St. Petersburg

Lenin Av., 76, Chelyabinsk, 454080



S. A. Gudkova
Moscow Institute of Physics and Technology; St. Petersburg State University
Russian Federation

Svetlana A. Gudkova

Institutsky lane, 9, Dolgoprudny, 141701

Universitetskaya embankment, 7–9, 199034, St. Petersburg



D. A. Vinnik
Moscow Institute of Physics and Technology; St. Petersburg State University; South Ural State University
Russian Federation

Denis A. Vinnik

Institutsky lane, 9, Dolgoprudny, 141701

Universitetskaya embankment, 7–9, 199034, St. Petersburg

Lenin Av., 76, Chelyabinsk, 454080



References

1. Jang J.T., Min J., Hwang Y., Choi S.J., Kim D.M., Kim H., Kim D.H. Digital and Analog Switching Characteristics of InGaZnO Memristor Depending on Top Electrode Material for Neuromorphic System. IEEE Access, 2020, 8, P. 192304–192311.

2. Sporea R.A., Niang K.M., Flewitt A.J., Silva S.R.P. Novel Tunnel-Contact-Controlled IGZO Thin-Film Transistors with High Tolerance to Geometrical Variability. J. Adv. Mater., 2019, 31 (36), 1902551.

3. Olziersky A., Barquinha P., Vil`a A., Maga˜na C., Fortunato E., Morante J.R., Martins R. Role of Ga2O3–In2O3–ZnO channel composition on the electrical performance of thin-film transistors. Mater. Chem. Phys., 2011, 131 (1–2), P. 512–518.

4. Kataoka Y., Imai H., Nakata Y., Daitoh T., Kimura T.M.N., Nakano T., Mizuno Y., Oketani T., Takahashi M., Tsubuku M., Miyake H., Hirakata T.I.Y, Koyama J., Yamazaki S., Koezuka J., Okazaki K. Development of IGZO-TFT and Creation of New Devices Using IGZO-TFT. SID Symposium Digest of Technical Papers, 2013, 44 (1), P. 771–774.

5. Hendy I., Brewer J., Muir S. Development of High?Performance IGZO Backplanes for Displays. Inf. Disp., 2022, 38 (5), P. 60–68.

6. Hong T., Kim Y.S., Choi S.H., Lim J.H., Park J.S. Exploration of Chemical Composition of In–Ga–Zn–O System via PEALD Technique for Optimal Physical and Electrical Properties. Adv. Electron. Mater., 2023, 9 (4), 2201208.

7. Bhatti G., Agrawal Y., Palaparthy V., Mummaneni K., Agrawal M. Flexible Electronics: A Critical Review. In: Agrawal, Y., Mummaneni, K., Sathyakam, P.U. (eds) Interconnect Technologies for Integrated Circuits and Flexible Electronics. Springer Tracts in Electrical and Electronics Engineering, Singapore, 2024, P. 221–248.

8. Bi S., Gao B., Han X., He Z., Metts J., Jiang C., Asare-Yeboah K. Recent progress in printing flexible electronics: A review. Sci. China Technol. Sci., 2024, 67, P. 2363–2386.

9. Benwadih M., Coppard R., Bonrad K., Klyszcz A., Vuillaume D. High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process. ACS Appl. Mater. Interfaces, 2016, 8 (50), P. 34513–34519.

10. Xu X., He G., Wang L., Wang W., Jiang S., Fang Z. Optimization of electrical performance and stability of fully solution-driven α-InGaZnO thin-film transistors by graphene quantum dots. J. Mater. Sci. Technol., 2023, 141. P. 100–109.

11. Xie Y., Cai K., Jian H., Huang Y., Weng J., Wang W. Study on Amorphous InGaZnO Thin-Film Transistor Modeling Method Based on Artificial Neural Network. IEEE J. Electron Devices Soc., 2023, 11, P. 717–725.

12. Mel´endrez Z.A.L., Dur´an A., Brown F., Negrete O.H., Paredes J.H., Montano V.E.A. Design of High-Entropy Ceramics with IGZO-Based Compounds for Electroceramics Applications. Advances in Powder and Ceramic Materials Science 2023, 2023, P. 3–10.

13. Han Y., Lee D.H., Cho E.S., Kwon S.J., Yoo H. Argon and Oxygen Gas Flow Rate Dependency of Sputtering-Based Indium-Gallium-Zinc Oxide Thin-Film Transistors. Micromachines, 2023, 14 (7), P. 1394–1404.

14. Lee Y.W., Choi S.H., Lee J.S., Kwon J.Y., Han M.K. Investigation of Amorphous IGZO TFT Employing Ti/Cu Source/Drain and SiNx Passivation. MRS Online Proceedings Library, 2011, 1321 (1906), P. 247–252.

15. Lu Q., Huang X., Li F., Xin H., Huang H. Fabrication and Properties of Amorphous IGZO-TFT. Proceedings of the 4th Workshop on Advanced Research and Technology in Industry (WARTIA 2018), 2018, 173, P. 279–282.

16. Nomura K., Ohta H., Ueda K., Kamiya T., Hirano M., Hosono H. Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor. Science, 2003, 300 (5623), P. 1269–1272.

17. Nomura K., Takagi A., Kamiya T., Ohta H., Hirano M., Hosono H. Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors. Jpn. J. Appl. Phys., 2006, 45 (5B), P. 4303–4308.

18. Xie Y., Wang D., Fong H.H. High-Performance Solution-Processed Amorphous InGaZnO Thin Film Transistors with a Metal–Organic Decomposition Method. J. Nanomater., 2018, 2018 (1), P. 1–7.

19. Liao P.-Y., Chang T.-C., Hsieh T.-Y., Tsai M.-Y., Chen B.-W., Tu Y.-H., Chu A.-K., Chou C.-H., Chang J.-F. Investigation of carrier transport behavior in amorphous indium–gallium–zinc oxide thin film transistors. Jpn. J. Appl. Phys., 2015, 54 (9), 094101.

20. Mohammadian N., Das B.C., Majewski L.A. Low-Voltage IGZO TFTs Using Solution-Deposited OTS-Modified Ta2O5 Dielectric. IEEE Trans. Electron. Devices, 2020, 67 (4), P. 1625–1631.

21. Tari A., Lee C.-H., Wong W.S. Electrical dependence on the chemical composition of the gate dielectric in indium gallium zinc oxide thin-film transistors. Appl. Phys. Lett., 2015, 107 (2), 023501.

22. Lee D.-H., Park S.-M., Kim D.-K., Lim Y.-S., Yi M. Effects of Ga Composition Ratio and Annealing Temperature on the Electrical Characteristics of Solution-processed IGZO Thin-film Transistors. JSTS, 2014, 14 (2), P. 163–168.

23. Nakamura M., Kimizuka N., Mohri T. The phase relations in the In2O3–Ga2ZnO4–ZnO system at 1350 ◦C. J. Solid State Chem., 1991, 93 (2), P. 298–315.

24. Yamazaki S., Kimizuka N. Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Fundamentals. Wiley, New York, 2016. 310 p.

25. Yang C.S., Huang S.J., Kao Y.C., Chen G.H., Chou W.-C. Physical properties of InGaO3(ZnO) with various content ratio grown by PAMBE. J. Cryst. Growth, 2015, 425, P. 258–261.

26. Lee J.-Y., Heo K.-J., Choi S.-G., Ryu H.G., Koh J.-H., Kim S.-J. Effects of Oxygen Injection Rates on a-IGZO Thin-film Transistors with Oxygen Plasma Treatment. JSTS, 2021, 21 (3), P. 189–198.

27. Liu S.-J., Fang H.-W., Hsieh J.-H., Juang J.-Y. Physical properties of amorphous Mo-doped In–Ga–Zn–O films grown by magnetron co-sputtering technique. Mater. Res. Bull., 2012, 47 (6), P. 1568–1571.

28. Jo E., Ahn J.H., Ha T.E., Kim E., Im H., Kim Y.-S. A Study of Spin Coated a-IGZO TFT with Y-doped ZrO2 Gate Insulators. Proceedings of the International Display Workshops, 2022, 29, P. 354–357.

29. Zalte M.B., Naik T.R., Alka A., Ravikanth M., Rao V.R., Baghini M.S. Passivation of Solution-Processed a-IGZO Thin-Film Transistor by Solution Processable Zinc Porphyrin Self-Assembled Monolayer. IEEE Trans. Electron Devices, 2021, 68 (11), P. 5920–5924.

30. Yan X., Li B., Zhang Y., Wang Y., Wang C., Chi Y., Yang X. Effect of Channel Shape on Performance of Printed Indium Gallium Zinc Oxide Thin-Film Transistors. Micromachines, 2023, 14 (11), P. 2121.

31. Zhang L., Guo Q., Tan Q., Fan Z., Xiong J. High Performance Amorphous IGZO Thin-Film Transistor Based on Alumina Ceramic. IEEE Access, 2019, 7, P. 184312–184319.

32. Chang J.S., Facchetti A.F., Reuss R. A Circuits and Systems Perspective of Organic/Printed Electronics: Review, Challenges, and Contemporary and Emerging Design Approaches. IEEE J. Emerg. Sel. Top Circuits Syst., 2017, 7 (1), P. 7–26.

33. Sanctis S., Hoffmann R.C., Bruns M., Schneider J.J. Direct Photopatterning of Solution–Processed Amorphous Indium Zinc Oxide and Zinc Tin Oxide Semiconductors – A Chimie Douce Molecular Precursor Approach to Thin Film Electronic Oxides. Adv. Mater. Interfaces, 2018, 5 (15), 1800324.

34. Kimura M., Kamiya T., Nakanishi T., Nomura K., Hosono H. Intrinsic carrier mobility in amorphous In–Ga–Zn–O thin-film transistors determined by combined field-effect technique. Appl. Phys. Lett., 2010, 96 (26), 262105.

35. Kamiya T., Hosono H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater., 2010, 2 (1), P. 15–22.

36. Takagi A., Nomura K., Ohta H., Yanagi H., Kamiya T., Hirano M., Hosono H. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4. Thin Solid Films, 2005, 486(1–2), P. 38–41.

37. Nomura K., Kamiya T., Ohta H., Shimizu K., Hirano M., Hosono H. Relationship between non-localized tail states and carrier transport in amorphous oxide semiconductor, In–Ga–Zn–O. Physica Status Solidi (A), 2008, 205 (8), P. 1910–1914.

38. Chen T.-C., Chang T.-C., Hsieh T.-Y., Tsai C.-T., Chen S.-C., Lin C.-S., Hung M.-C., Tu C.-H., Chang J.-J., Chen P.-L. Light-induced instability of an InGaZnO thin film transistor with and without SiOx passivation layer formed by plasma-enhanced-chemical-vapor-deposition. Appl. Phys. Lett., 2010, 97 (19), 192103.

39. Hsieh T.-Y., Chang T.-C., Chen T.-C., Chen Y.-T., Tsai M.-Y., Chu A.-K., Chung Y.-C., Ting H.-C., Chen C.-Y. Self-Heating-Effect-Induced Degradation Behaviors in a-InGaZnO Thin-Film Transistors. IEEE Electron Device Lett., 2013, 34 (1), P. 63–65.

40. Hsieh T.-Y., Chang T.-C., Chen T.-C., Tsai M.-Y., Chen Y.-T., Jian F.-Y., Chung Y.-C., Tung H.-C., Chen C.-Y. Investigating the Drain-Bias-Induced Degradation Behavior Under Light Illumination for InGaZnO Thin-Film Transistors. IEEE Electron Device Lett., 2012, 33 (7), P. 1000–1002.

41. Chen T.-C., Chang T.-C., Hsieh T.-Y., Lu W.-S., Jian F.-Y., Tsai C.-T., Huang S.-Y., Lin C.-S. Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor. Appl. Phys. Lett., 2011, 99 (2), 022104.

42. Wu M.-C., Hsiao K.-C., Lu H.-C. Synthesis of InGaZnO4 nanoparticles using low temperature multistep co-precipitation method. Mater. Chem. Phys., 2015, 162, P. 386–391.

43. Fukuda N., Watanabe Y., Uemura S., Yoshida Y., Nakamura T., Ushijima H. In–Ga–Zn oxide nanoparticles acting as an oxide semiconductor material synthesized via a coprecipitation-based method. J. Mater. Chem. C, 2014, 2 (13), P. 2448–2454.

44. Kondrat’eva O.N., Smirnova M.N., Nikiforova G.E., Razumov M.I., Khoroshilov A.V. Layered ceramics based on InGaO3(ZnO)2: Preparation and experimental investigation of high-temperature heat capacity and thermal conductivity. J. Eur. Ceram. Soc., 2021, 41 (13), P. 6559–6566.

45. Zirnik G.M., Chernukha A.S., Uchaev D.A., Solizoda I.A., Gudkova S.A., Nekorysnova N.S., Vinnik D.A. Phase formation of nanosized InGaZnO4 obtained by the sol-gel method with different chelating agents. Nanosystems: Phys. Chem. Math., 2024, 15 (4), P. 520–529.

46. Kimizuka N., Mohri T., Matsui Y., Siratori K. Homologous compounds, InFeO3(ZnO)m (m = 1 – 9). J. Solid State Chem., 1988, 74 (1), P. 98–109.

47. Pr´eaud S., Byl C., Brisset F., Berardan D. SPS?assisted synthesis of InGaO3(ZnO)m ceramics, and influence of m on the band gap and the thermal conductivity. JACerS, 2020, 103 (5), P. 3030–3038.


Review

For citations:


Anannikov E.S., Markin T.A., Solizoda I.A., Zirnik G.M., Uchaev D.A., Chernukha A.S., Gudkova S.A., Vinnik D.A. Synthesis and research of physical and chemical properties of InGaZn2O5 prepared by nitrate-glycolate gel decomposition method. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):806-813. https://doi.org/10.17586/2220-8054-2024-15-6-806-813

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)