Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Solution combustion approach to the phase pure nanocrystalline lithium ferrite (Li0.5Fe2.5O4) with spinel structure and magnetically soft behavior

https://doi.org/10.17586/2220-8054-2024-15-6-814-820

Abstract

Lithium ferrite nanoparticles (Li0.5Fe2.5O4) were synthesized via the solution combustion method with a substantial deficiency of organic fuel (glycine, f = 0.05), followed by heat treatment of X-ray amorphous combustion products at temperatures ranging from 500 to 750C. Comprehensive characterization was performed using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), atomic absorption spectrometry (AAS), powder X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results indicate significant morphological and structural changes in the nanopowders depending on the heat treat- ment temperature. Average particle sizes ranged from 14.2 to 59.5 nm, while crystallinity varied from 89.4% to 62.8%. Magnetic properties also varied, with coercivity (Hc) between 58.4 and 102.4 Oe, residual magnetization (Mr) from 5.2 to 15.4 emu/g, and saturation magnetization (Ms) from 35.1 to 60.7 emu/g. These findings demonstrate that pure lithium ferrite nanoparticles, free from impurity oxide phases, can be produced through controlled heat treatment of X-ray amorphous combustion products. Furthermore, the magnetic properties of the nanoparticles are highly sensitive to the specific heat treatment temperature, indicating that thermal processing conditions play a crucial role in determining their magnetic behavior.

About the Authors

K. D. Martinson
Ioffe Institute
Russian Federation

Kirill D. Martinson

Politekhnicheskaya st., 26, Saint Petersburg, 194064



V. I. Popkov
Ioffe Institute
Russian Federation

Vadim I. Popkov

Politekhnicheskaya st., 26, Saint Petersburg, 194064



References

1. Salih S.J., Mahmood W.M. Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application. Heliyon, 2023, 9(6), P. e16601.

2. Martinson K.D., Cherepkova I.A., Sokolov V.V. Formation of cobalt ferrite nanoparticles via glycine-nitrate combustion and their magnetic properties. Glass Physics and Chemistry, 2018, 44, P. 21–25.

3. Askarzadeh N., Shokrollahi H. A review on synthesis, characterization and properties of lithium ferrites. Results in Chemistry, 2024, 10, P. 101679.

4. Liandi A.R., Cahyana A.H., Kusumah A.J.F., Lupitasari A, Alfariza D.N., Nuraini R., Sari R.W., Kusumasari F.C. Recent trends of spinel ferrites (MFe2O4: Mn, Co, Ni, Cu, Zn) applications as an environmentally friendly catalyst in multicomponent reactions: A review. Case Studies in Chemical and Environmental Engineering, 2023, 7, P. 100303.

5. Martinson K.D., Panteleev I.B., Steshenko K.A., Popkov V.I., Effect of Bi2O3 contents on magnetic and electromagnetic properties of LiZnMn ferrite ceramics. Journal of the European Ceramic Society, 2022, 42(8), P. 3463–3472.

6. Dastjerdi O.D., Shokrollahi H., Mirshekari S. A review of synthesis, characterization, and magnetic properties of soft spinel ferrites. Inorganic Chemistry Communications, 2023, 153, P. 110797.

7. Sagayaraj R. A review on structural and magnetic properties of magnesium ferrite nanoparticles. International Nano Letters, 2022, 12, P. 345–350.

8. Harris V.G., Geiler A., Chen Y., Yoon S.D., Wu M., Yang A., Chen Z., He P., Parimi P.V., Zuo X., Patton C.E., Abe M., Acher O., Vittoria C. Recent advances in processing and applications of microwave ferrites. Journal of Magnetism and Magnetic Materials, 2009, 321, P. 2035–2047.

9. Dyachenko S.V., Martinson K.D., Cherepkova I.A., Zhernovoi A.I. Particle size, morphology, and properties of transition metal ferrospinels of the MFe2O4 (M = Co, Ni, Zn) type, produced by glycine-nitrate combustion. Russian Journal of Applied Chemistry, 2016, 89, P. 535–539.

10. Verma R., Thakur P., Sun A.-C. A., Thakur A. Investigation of structural, microstructural and electrical characteristics of hydrothermally synthesized Li0.5−0.5xCoxFe2.5−0.5xO4, (0.0≤ x ≤0.4) ferrite nanoparticles. Physica B: Condensed Matter, 2023, 661, P. 414926.

11. Malathi S., Wayessa S.G. A Study of Lithium Ferrite and Vanadium-Doped Lithium Ferrite Nanoparticles Based on the Structural, Optical, and Magnetic Properties. Journal of Nanomaterials, 2023, 2023, P. 6752950.

12. Verma V., Gairola S.P., Pandey V., Kotanala R.K., Su H. Permeability of Nb and Ta doped lithium ferrite in high frequency range. Solid State Communications, 2008, 148(3-4), P. 117–121.

13. Mazen S.A., Abu-Elsaad N.I., Structural, magnetic and electrical properties of the lithium ferrite obtained by ball milling and heat treatment. Applied Nanoscience, 2015, 5, P. 105–114.

14. Lysenko E.N., Nikolaev E.V., Vlasov V.A., Svirkov A.S., Surzhikov A.P., Sheveleva E.A., Plotnikova I.V., Artishchev S.A. Structural and Electro-magnetic Properties of Lithium Ferrite Manufactured by Extrusion Printing. Russian Physics Journal, 2024, 67, P. 960–965.

15. Martinson K.D., Ivanov A.A., Panteleev I.B., Popkov V.I., Effect of sintering temperature on the synthesis of LiZnMnFe microwave ceramics with controllable electro/magnetic properties. Ceramics International, 2021, 47(21), P. 0071–30081.

16. Dasari M., Gajula G.R., Rao D.H., Chintabathini A.K., Kurimella S., Somayajula B. Lithium ferrite: the study on magnetic and complex permittivity characteristics. Processing and Application of Ceramics, 2017, 11(1), P. 7–12.

17. Rezlescu N., Doroftei C., Rezlescu E., Papa P.D. Lithium ferrite for gas sensing applications. Sensors and Actuators B: Chemical, 2008, 133(2), P. 420–425.

18. Ateia E.E., Ateia M.A., Fayed M.G., El-Hout S.I., Mohamed S.G., Arman M.M., Synthesis of nanocubic lithium cobalt ferrite toward high-performance lithium-ion battery. Applied Physics A, 2022, 128, P. 483.

19. Teixeira S.S., Graca M.P.F., Lucas J., Valente M.A., Soares P.I.P., Lanca M.C., Vieira T., Silva J.C., Borges J.P., Jinga L.I., Socol G., Salgueiro C.M., Nunes J., Costa L.C., Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine. Nanomaterials, 2021, 11(1), P. 193.

20. Berbenni V., Marini A., Matteazzi P., Ricceri R., Walham N.J., Solid-state formation of lithium ferrites from mechanicallyactivated Li2CO3-Fe2O3 mixtures. Journal of European Ceramic Society, 2003, 23(3), P. 527–536.

21. Ahmad M., Shahid M., Alanazi Y.M., Rehman A.U., Asif M., Dunnill C.W., Lithium ferrite (Li0.5Fe2.5O4): synthesis, structural, morphological and magnetic evaluation for storage devices. Journal of Materials Research and Technology, 2022, 18, P. 3386–3395.

22. Venkatachalapathy R., Manoharan C., Venkateshwarlu M., Elfadeel G.A., Saddeek Y., Solution combustion route for Ni and Al co-doped lithium ferrite nanoparticles: Synthesis, the effect of doping on the structural, morphological, optical, and magnetic properties. Ceramics International, 2023, 49(4), P. 6594–6607.

23. Mohanty V., Govindaraj G., Li0.5CexFe2.5−xO4 (x = 0, 0.05): hydrothermal synthesis, electrical and magnetic properties. Materials Research Express, 2018, 5, P. 055014.

24. Fu, Y.-P., Lin C.-H., Liu C.-W., Yao Y.-D. Microwave-induced combustion synthesis of Li0.5Fe2.5O4 powder and their characterization. Journal of Alloys and Compounds, 2005, 395(1-2), P. 247–251.

25. Naderi P., Masoudpanah S.M., Alamolhoda S. Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method. Applied Physics A, 2017, 123, P. 702.

26. Randhawa B.S., Dosanjh H.S, Kumar N. Synthesis of lithium ferrite by precursor and combustion methods: A comparative study. Journal of Radioanalytical and Nuclear Chemistry, 2007, 274, P. 581–591.

27. Martinson K.D., Panteleev I.B., Shevchik A.P., Popkov V.I. Effect of the Red/Ox ration on the structure and magnetic behavior of Li0.5Fe2.5O4 nanocrystals synthesized by solution combustion approach. Letters on Materials, 2019, 9(4), P. 475–479.

28. Iida Y. Evaporation of Lithium Oxide from Solid Solution of Lithium Oxide in Nickel Oxide. Journal of American Ceramic Society, 1960, 43(3), P. 171–172.

29. Jing X., Guo M., Li Z., Qin C., Chen Z., Li Z., Gong H. Study on structure and magnetic properties of rare earth doped cobalt ferrite: The influence mechanism of different substitution positions. Ceramics International, 2023, 49(9), P. 14046–14056.

30. Sun B., Ma D., Bai G., Lu X., Yang J., Wang K., Xu X., Zhai Y., Quan W., Han B. Correlating the microstructure of Mn-Zn ferrite with magnetic noise for magnetic shield applications. Ceramics International, 2023, 49(8), P. 11960–11967.


Review

For citations:


Martinson K.D., Popkov V.I. Solution combustion approach to the phase pure nanocrystalline lithium ferrite (Li0.5Fe2.5O4) with spinel structure and magnetically soft behavior. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):814-820. https://doi.org/10.17586/2220-8054-2024-15-6-814-820

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)