Интерметаллиды, полученные из гидрогерманатов Me3Ge2O5(OH)4 (Me = Mg, Ni, Fe, Co): синтез однофазных прекурсоров
https://doi.org/10.17586/2220-8054-2024-15-6-821-836
Аннотация
Обычно интерметаллиды получают твердофазным методом при высоких температурах. В данной работе предложен простой метод получения интерметаллидов путем восстановления из прекурсоров в атмосфере Ar-H2. Окисление Co2+ и Fe2+ в гидротермальных условиях представляет собой дополнительную экспериментальную задачу. В данной работе мы впервые сообщаем об успешном синтезе Fe-гидрогерманата. Выявлены общие закономерности образования гидрогерманатов и определено влияние гидротермальной обработки на фазовый состав и морфологию для всего ряда гидрогерманатов. Образование гидрогерманатов в гидротермальных условиях изучалось в диапазоне температур 100-200 ℃ в трех гидротермальных средах: H2O, NaOH, Na2SO3. Последняя ингибировала окисление Co2+ и Fe2+ во время синтеза. Повышение температуры способствовало образованию фазы, описываемой трехслойной элементарной ячейкой. Термическая обработка в атмосфере Ar-H2 позволила получить интерметаллиды и сплавы MexGey, а также установить температурные режимы восстановительных процессов.
Об авторах
Е. К. ХраповаРоссия
А. А. Иванова
Россия
Д. А. Кириленко
Россия
А. А. Красилин
Россия
Список литературы
1. Roveri N., Falini G., Foresti E., Fracasso G., Lesci I.G., Sabatino P. Geoinspired synthetic chrysotile nanotubes. J. of materials research, 2006, 21 (11), P. 2711–2725.
2. Korytkova E.N., Maslov A.V., Pivovarova L.N., Drozdova I.A., Gusarov V.V. Formation of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions. Glass Physics and Chemistry, 2004, 30, P. 51–55.
3. Mellini M. The crystal structure of lizardite 1 T: hydrogen bonds and polytypism. American Mineralogist, 1982, 67 (5–6), P. 587–598.
4. Alvarez-Ram´ırez F., Toledo-Antonio J.A., Angeles-Chavez C., Guerrero-Abreo J.H., L´opez-Salinas E. Complete structural characterization of Ni3Si2O5(OH)4 nanotubes: theoretical and experimental comparison. The J. of Physical Chemistry C, 2011, 115 (23), P. 11442–11446.
5. Krasilin A.A., Semenova A.S., Kellerman D.G., Nevedomsky V.N., Gusarov V.V. Magnetic properties of synthetic Ni3Si2O5(OH)4 nanotubes. Europhysics Letters, 2016, 113 (4), 47006.
6. Korytkova E.N., Maslov A.V., Pivovarova L.N., Polegotchenkova Y.V., Povinich V.F., Gusarov V.V. Synthesis of nanotubular Mg3Si2O5(OH)4– Ni3Si2O5(OH)4 silicates at elevated temperatures and pressures. Inorganic materials, 2005, 41, P. 743–749.
7. Korytkova E.N., Pivovarova L.N. Hydrothermal synthesis of nanotubes based on (Mg, Fe, Co, Ni)3Si2O5(OH)4 hydrosilicates. Glass Physics and Chemistry, 2010, 36, P. 53–60.
8. Khrapova E.K., Ivanova A.A., Kirilenko D.A., Levin A.A., Bert N.A., Ugolkov V.L., Krasilin A.A. Phase transformations of (CoxMg1−x)3Si2O5(OH)4 phyllosilicate nanoscrolls upon heating in Ar, O2 and H2 containing atmospheres. Applied Clay Science, 2024, 250, 107282.
9. Khrapova E.K., Kozlov D.A., Krasilin A.A. Hydrothermal Synthesis of Hydrosilicate Nanoscrolls (Mg1−xCox)3Si2O5(OH)4 in a Na2SO3 Solution. Russian J. of Inorganic Chemistry, 2022, 67 (6), P. 839–849.
10. Korytkova E.N., Pivovarova L.N., Gusarov V.V. Influence of iron on the kinetics of formation of chrysotile nanotubes of composition (Mg, Fe)3Si2O5(OH)4 under hydrothermal conditions. Geochemistry International, 2007, 45, P. 825–831.
11. Krasilin A.A., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of variable-composition iron (III) hydrosilicates with the chrysotile structure. Russian J. of General Chemistry, 2016, 86, P. 2581–2588.
12. Foresti E., Hochella Jr M.F., Kornishi H., Lesci I.G., Madden A.S., Roveri N., Xu H. Morphological and Chemical/Physical Characterization of Fe-Doped Synthetic Chrysotile Nanotubes. Advanced Functional Materials, 2005, 15 (6), P. 1009–1016.
13. Bloise A., Barrese E., Apollaro C. Hydrothermal alteration of Ti-doped forsterite to chrysotile and characterization of the resulting chrysotile fibers. Neues Jahrbuch f¨ur Mineralogie, 2009, 185 (3), P. 297–304.
14. Roy D.M., Roy R. An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals. American Mineralogist: J. of Earth and Planetary Materials, 1954, 39 (11–12), P. 957–975.
15. Krasilin A.A., Khrapova E. K. Effect of hydrothermal treatment conditions on formation of nickel hydrogermanate with platy morphology. Russian J. of Applied Chemistry, 2017, 90, P. 22–27.
16. White R.D., Bavykin D.V., Walsh F.C. Spontaneous scrolling of kaolinite nanosheets into halloysite nanotubes in an aqueous suspension in the presence of GeO2. The J. of Physical Chemistry C, 2012, 116 (15), P. 8824–8833.
17. Paineau E. Imogolite nanotubes: a flexible nanoplatform with multipurpose applications. Applied Sciences, 2018, 8 (10), 1921.
18. Hall S.H., Guggenheim S., Moore P., Bailey S.W. The structure of Unst-type 6-layer serpentines. The Canadian Mineralogist, 1976, 14 (3), P. 314–321.
19. Belskaya N.A., Khrapova E.K., Ivanova A.A., Eremin E.V., Pavlov S.I., Krasilin A.A. Structure refinement and magnetic properties of synthetic Co3Ge2O5(OH)4 phyllogermanate. J. of Magnetism and Magnetic Materials, 2023, 587, 171262.
20. Abdelkrim Y., Wu J., Jiao F.Z., Wang Z.H., Hou S.X., Zhang T.T., Qu J. Cobalt germanium hydroxides with asymmetric electron distribution and surface hydroxyl groups for superb catalytic degradation performances. J. of Colloid and Interface Science, 2025, 677, P. 282–293.
21. Xu Z., Li W., Wang X., Wang B., Shi Z., Dong C., Zou Z. Novel cobalt germanium hydroxide for electrochemical water oxidation. ACS applied materials & interfaces, 2018, 10 (36), P. 30357–30366.
22. Zhang N., Yang B., He Y., He Y., Liu X., Liu M., Roy V.A. Serpentine Ni3Ge2O5(OH)4 nanosheets with tailored layers and size for efficient oxygen evolution reactions. Small, 2018, 14 (48), 1803015.
23. Yang B., Zhang N., Chen G., Liu K., Yang J., Pan A., Qiu T. Serpentine CoxNi3−xGe2O5(OH)4 nanosheets with tuned electronic energy bands for highly efficient oxygen evolution reaction in alkaline and neutral electrolytes. Applied Catalysis B: Environmental, 2020, 260, 118184.
24. Wen N., Chen S., Feng J., Zhang K., Zhou Z., Li X., Zhao Y. In situ hydrothermal synthesis of double-carbon enhanced novel cobalt germanium hydroxide composites as promising anode material for sodium ion batteries. Dalton transactions, 2021, 50 (12), P. 4288–4299.
25. Li H.S., Qu J., Hao S.M., Wang Z.Z., Zhang Y.J., Yu Z.Z. Enhanced lithium storage performances of novel layered nickel germanate anodes inspired by the spatial arrangement of lotus leaves. Nanoscale, 2018, 10 (23), P. 10963–10970.
26. Liu F., Ye S., Guo H., Zhai M., Qian J. Assembled β-Co(OH)2 Nanoparticles on Reduced Graphene Oxide for Enhanced Magnetism. J. of Superconductivity and Novel Magnetism, 2014, 27, P. 787–791.
27. Gaudet S., Detavernier C., Kellock A.J., Desjardins P., Lavoie C. Thin film reaction of transition metals with germanium. J. of Vacuum Science & Technology A, 2006, 24 (3), P. 474–485.
28. Sadoh T., Kamizuru H., Kenjo A., Miyao M. Low-temperature formation (< 500 ◦ C) of poly-Ge thin-film transistor with NiGe Schottky source/drain. Applied physics letters, 2006, 89 (19).
29. Kauzlarich S.M., Ju Z., Tseng E., Lundervold J. Recent developments in germanium containing clusters in intermetallics and nanocrystals. Chemical Society Reviews, 2021, 50 (23), P. 13236–13252.
30. Menezes P.W., Yao S., Beltr´an?Suito R., Hausmann J.N., Menezes P.V., Driess M. Facile access to an active γ-NiOOH electrocatalyst for durable water oxidation derived from an intermetallic nickel germanide precursor. Angewandte Chemie, 2021, 133 (9), P. 4690–4697.
31. Walter C., Menezes P. W., Driess M. Perspective on intermetallics towards efficient electrocatalytic water-splitting. Chemical Science, 2021, 12 (25), P. 8603–8631.
32. Toraya H. Quantitative phase analysis using observed integrated intensities and chemical composition data of individual crystalline phases: quantification of materials with indefinite chemical compositions. J. of Applied Crystallography, 2017, 50 (3), P. 820–829.
33. Toraya H. Whole-powder-pattern fitting without reference to a structural model: application to X-ray powder diffraction data. J. of Applied Crystallography, 1986, 19 (6), P. 440–447.
34. Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nature methods, 2012, 9 (7), P. 671–675.
35. Ivanov V.K., Fedorov P.P., Baranchikov A.Y., Osiko V.V.E. Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russian Chemical Reviews, 2014, 83 (12), 1204.
36. Pokrovski G.S., Schott J. Thermodynamic properties of aqueous Ge (IV) hydroxide complexes from 25 to 350 C: implications for the behavior of germanium and the Ge/Si ratio in hydrothermal fluids. Geochimica et Cosmochimica Acta, 1998, 62 (9), P. 1631–1642.
37. Lin J.X., Wang L. Adsorption of dyes using magnesium hydroxide-modified diatomite. Desalination and Water Treatment, 2009, 8 (1–3), P. 263– 271.
38. Hern´andez N., Moreno R., S´anchez-Herencia A.J., Fierro J.L. Surface behavior of nickel powders in aqueous suspensions. The J. of Physical Chemistry B, 2005, 109 (10), P. 4470–4474.
39. Lorenzen A.L., Rossi T.S., Riegel-Vidotti I.C., Vidotti M. Influence of cationic and anionic micelles in the (sono) chemical synthesis of stable Ni(OH)2 nanoparticles: “In situ” zeta-potential measurements and electrochemical properties. Applied Surface Science, 2018, 455, P. 357–366.
40. White R.D., Bavykin D.V., Walsh F.C. Morphological control of synthetic Ni3Si2O5(OH)4 nanotubes in an alkaline hydrothermal environment. J. of Materials Chemistry A, 2013, 1 (3), P. 548–556.
41. Krasilin A.A., Nevedomsky V.N., Gusarov V.V. Comparative energy modeling of multiwalled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 nanoscroll growth. The J. of Physical Chemistry C, 121 (22), P. 12495–12502.
42. Bloise A., Belluso E., Barrese E., Miriello D., Apollaro C. Synthesis of Fe-doped chrysotile and characterization of the resulting chrysotile fibers. Crystal Research and Technology: J. of Experimental and Industrial Crystallography. 44 (6), P. 590–596.
43. Dzene L., Brendle J., Limousy L., Dutournie P., Martin C., Michau N. Synthesis of iron-rich tri-octahedral clay minerals: A review. Applied Clay Science, 2018, 166, P. 276–287.
44. Pignatelli I., Mosser-Ruck R., Mugnaioli E., Sterpenich J., Gemmi M. The effect of the starting mineralogical mixture on the nature of Feserpentines obtained during hydrothermal synthesis at 90 C. Clays and Clay Minerals, 2020, 68 (4), P. 394–412.
45. Zieli˜nski J., Zglinicka I., Znak L., Kaszkur Z. Reduction of Fe2O3 with hydrogen. Applied Catalysis A: General, 2010, 381 (1–2), P. 191–196.
46. Bielz T., Soisuwan S., Girgsdies F., Klo?tzer B., Penner S. Reduction of different GeO2 polymorphs. The J. of Physical Chemistry C, 2012, 116 (18), P. 9961–9968.
47. Chen C.X., Wu S.P., Fan Y.X. Synthesis and microwave dielectric properties of B2O3-doped Mg2GeO4 ceramics. J. of alloys and compounds, 2013, 578, P. 153–156.
48. Yamaguchi O., Matumoto H., Morikawa S., Shimizu K. Preparation and Thermal Behavior of Magnesium?Germanium Hydroxide. J. of the American Ceramic Society, 1983, 66 (9), P. c169–c170.
49. Liu Y.Q., Ma D.J., Du Y. Thermodynamic modeling of the germanium–nickel system. J. of Alloys and Compounds, 2010, 491 (1–2), P. 63–71.
50. Okamoto H. Fe–Ge (iron-germanium). J. of Phase Equilibria and Diffusion, 2008, 29 (3), 292.
51. Audebrand N., Ellner M., Mittemeijer E J. High-temperature ordering of structural vacancies in the cobalt-rich portion of the binary system Co–Ge. J. of alloys and compounds, 2005, 388 (2), P. 230–234.
Рецензия
Для цитирования:
Храпова Е.К., Иванова А.А., Кириленко Д.А., Красилин А.А. Интерметаллиды, полученные из гидрогерманатов Me3Ge2O5(OH)4 (Me = Mg, Ni, Fe, Co): синтез однофазных прекурсоров. Наносистемы: физика, химия, математика. 2024;15(6):821-836. https://doi.org/10.17586/2220-8054-2024-15-6-821-836
For citation:
Khrapova E.K., Ivanova A.A., Kirilenko D.A., Krasilin A.A. Intermetallic compounds obtained from Me3Ge2O5(OH)4 (Me = Mg, Ni, Fe, Co) phyllogermanates: synthesis of single-phase precursors. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):821-836. https://doi.org/10.17586/2220-8054-2024-15-6-821-836