Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Granular Ni–Mo–W bulk hydrotreating catalyst: the effects from precursor calcination

https://doi.org/10.17586/2220-8054-2024-15-6-837-854

Abstract

This paper presents a study on the effect of the Ni–Mo–W precursor calcination (300, 450 and 500 C) on properties of granulated bulk Ni–Mo–W catalysts. The Ni–Mo–W precursor and bulk catalysts were studied by XRD, nitrogen adsorption-desorption method, CHNS analysis, thermal analysis, Raman spectroscopy, UV-Vis DR spectroscopy, HRTEM and XPS. It is shown that the increase in calcination temperature of the precursor to 500 C leads to stepwise decomposition of citric acid, transformation of active metals and re-structurization of the samples. Active metals in sulfide catalysts are present in the bulk mixed or individual sulfides and interact with alumina binder to form “NiMoS-like” sulfide phase. Increased crystallinity of the precursor results in the enlargement of bulk nickel particles, capsulation of Mo and W and their rounding by Ni atoms. Catalysts testing in hydrotreatment of SRVGO demonstrates that the best choice of temperature regimes is 300C for the precursor.

About the Authors

K. A. Nadeina
Boreskov Institute of Catalysis SB RAS
Russian Federation

Ksenia A. Nadeina

Pr. Lavrentieva 5, 630090 Novosibirsk



Yu. V. Vatutina
Boreskov Institute of Catalysis SB RAS
Russian Federation

Yuliya V. Vatutina

Pr. Lavrentieva 5, 630090 Novosibirsk



P. P. Mukhacheva
Boreskov Institute of Catalysis SB RAS
Russian Federation

Polina P. Mukhacheva

Pr. Lavrentieva 5, 630090 Novosibirsk



S. V. Budukva
Boreskov Institute of Catalysis SB RAS
Russian Federation

Sergey V. Budukva

Pr. Lavrentieva 5, 630090 Novosibirsk



I. G. Danilova
Boreskov Institute of Catalysis SB RAS
Russian Federation

Irina G. Danilova

Pr. Lavrentieva 5, 630090 Novosibirsk



V. P. Pakharukova
Boreskov Institute of Catalysis SB RAS
Russian Federation

Vera P. Pakharukova

Pr. Lavrentieva 5, 630090 Novosibirsk



E. Yu. Gerasimov
Boreskov Institute of Catalysis SB RAS
Russian Federation

Evgeniy Yu. Gerasimov

Pr. Lavrentieva 5, 630090 Novosibirsk



M. A. Panafidin
Boreskov Institute of Catalysis SB RAS
Russian Federation

Maxim A. Panafidin

Pr. Lavrentieva 5, 630090 Novosibirsk



O. V. Klimov
Boreskov Institute of Catalysis SB RAS
Russian Federation

Oleg V. Klimov

Pr. Lavrentieva 5, 630090 Novosibirsk



References

1. Tanimu A., Alhooshani K. Advanced Hydrodesulfurization Catalysts: A Review of Design and Synthesis. Energy and Fuels, 2019, 33, P. 2810– 2838.

2. D´ıaz de Le´on J.N., Ramesh Kumar C., Ant´unez-Garc´ıa J., Fuentes-Moyado S. Recent Insights in Transition Metal Sulfide Hydrodesulfurization Catalysts for the Production of Ultra Low Sulfur Diesel: A Short Review. Catalysts, 2019, 9, 87.

3. Topsøe H., Clausen B.S., Candia R., Wivel C., Mørup S. In situ M¨ossbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: Evidence for and nature of a Co–Mo–S phase. J. Catal., 1981, 68, P. 433–452.

4. Lauritsen J.V., Kibsgaard J., Olesen G.H., Moses P.G., Hinnemann B., Helveg S., Nørskov J.K., Clausen B.S., Topsøe H., Lægsgaard E., Besenbacher F. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal., 2007, 249, P. 220–233.

5. Plantenga F.L., Cerfontain R., Eijsbouts S., Houtert F., Anderson G.H., Miseo S., Soled S., Riley K., Fujita K., Inoue Y. “NEBULA”: A hydroprocessing catalyst with breakthrough activity. Stud. Surf. Sci. Catal., 2003, 145, P. 407–410.

6. Eijsbouts S., Plantenga F., Leliveld B., Inoue Y., Fujita K. STARS and NEBULA – New Generations of Hydroprocessing Catalysts for the Production of Ultra Low Sulfur Diesel. Prepr. Symp. – Am. Chem. Soc., Div. Fuel Chem., 2003, 48, P. 494–495.

7. Thomazeau C., Geantet C., Lacroix M., Danot M., Harl´e V., Raybaud P. Predictive approach for the design of improved HDT catalysts: γ-Alumina supported (Ni, Co) promoted Mo1−xWxS2 active phases. Appl. Catal. A Gen., 2007, 322, P. 92–97.

8. Cervantes-Gaxiola M.E., Arroyo-Albiter M., P´erez-Larios A., Balbuena P.B., Espino-Valencia J. Experimental and theoretical study of NiMoW, NiMo, and NiW sulfide catalysts supported on an AlTiMg mixed oxide during the hydrodesulfurization of dibenzothiophene. Fuel, 2013, 113, P. 733–743.

9. Krebs E., Silvi B., Daudin A., Raybaud P. A DFT study of the origin of the HDS/HydO selectivity on Co(Ni)MoS active phases. J. Catal., 2008, 260, P. 276–287.

10. Shan S., Liu H., Yue Y., Shi G., Bao X. Trimetallic WMoNi diesel ultra-deep hydrodesulfurization catalysts with enhanced synergism prepared from inorganic–organic hybrid nanocrystals. J. Catal., 2016, 344, P. 325–333.

11. Varakin A.N., Mozhaev A.V., Pimerzin A.A., Nikulshin P.A. Comparable investigation of unsupported MoS2 hydrodesulfurization catalysts prepared by different techniques: Advantages of support leaching method. Appl. Catal. B Environ., 2018, 238, P. 498–508.

12. Yin C., Dong C., Kong Y., Li K., Zhang H., Liu D., Liu C. Effects of Aging Treatment on the Hydrotreating Performance of the Unsupported Catalyst. Ind. & Eng. Chem. Res., 2019, 58, P. 2683–2688.

13. Nadeina K.A., Budukva S.V., Vatutina Y.V., Mukhacheva P.P., Gerasimov E.Y., Pakharukova V.P., Prosvirin I.P., Larina T.V., Klimov O.V., Noskov A.S., Atuchin V.V. Optimal Choice of the Preparation Procedure and Precursor Composition for a Bulk Ni–Mo–W Catalyst. Inorganics, 2023, 11, 89.

14. Mukhacheva P.P., Vatutina Y.V., Nadeina K.A., Budukva S.V., Pakharukova V.P., Danilova I.G., Panafidin M.A., Klimov O.V., Noskov A.S. Effects of Heat Treatment Temperature on the Physicochemical Properties and Catalytic Performance of Bulk Ni–Mo–W Catalysts. Pet. Chem., 2023, 63, P. 1302–1310.

15. Wang L., Zhang Y., Zhang Y., Jiang Z., Li C. Ultra-Deep Hydrodesulfurization of Diesel Fuels on Trimetallic NiMoW Sulfide Catalysts. Chem. – A Eur. J., 2009, 15, P. 12571–12575.

16. Chowdari R.K., D´ıaz de Le´on J.N., Fuentes-Moyado S. Effect of sulfidation conditions on the unsupported flower-like bimetallic oxide microspheres for the hydrodesulfurization of dibenzothiophene. Catal. Today, 2022, 394–396, P. 13–24.

17. Ouyang X., Kuperman A. Multi-metallic bulk hydroprocessing catalysts, Patent 2022269376, 2021.

18. Liu H., Yin C., Liu B., Li X., Li Y., Chai Y., Liu C. Effect of Calcination Temperature of Unsupported NiMo Catalysts on the Hydrodesulfurization of Dibenzothiophene. Energy & Fuels, 2014, 28, P. 2429–2436.

19. Yang C., Hu A., Dai Q., Yang Q., Hou R., Liu Z. Study on the Performance of Ni–MoS2 Catalysts with Different MoS2 Structures for Dibenzothiophene Hydrodesulfurization. ACS Omega, 2023, 8, P. 41182–41193.

20. Nadeina K.A., Budukva S.V., Vatutina Y.V., Mukhacheva P.P., Gerasimov E.Y., Pakharukova V.P., Klimov O.V., NoskovA.S. Unsupported Ni– Mo–W Hydrotreating Catalyst: Influence of the Atomic Ratio of Active Metals on the HDS and HDN Activity. Catalysts, 2022, 12, 1671.

21. Danilevich V.V., Nadeina K.A., Gerasimov E.Y., Shefer K.I., Klimov O.V., Noskov A.S. Synthesis and characterization of lanthanum-modified pseudoboehmite – The precursor of alumina supports and catalysts. Microporous Mesoporous Mater., 2022, 335, 111800.

22. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem., 2015, 87, P. 1051–1069.

23. Moulder J.F. Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corporation, 1992.

24. Scofield J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectros. Relat. Phenomena, 1976, 8, P. 129– 137.

25. Gajbhiye N.S., Balaji G. Synthesis, reactivity, and cations inversion studies of nanocrystalline MnFe2O4 particles. Thermochim. Acta, 2002, 385, P. 143–151.

26. Bocher L., Aguirre M.H., Robert R., Trottmann M., Logvinovich D., Hug P., Weidenkaff A. Chimie douce synthesis and thermochemical characterization of mesoporous perovskite-type titanate phases. Thermochim. Acta, 2007, 457, P. 11–19.

27. Rajendran M., Rao M.S. Formation of BaTiO3 from Citrate Precursor. J. Solid State Chem.,1994, 113, P. 239–247.

28. Rajendran M., Rao S.M. Synthesis and characterization of barium bis(citrato) oxozirconate(IV) tetrahydrate: A new molecular precursor for fine particle BaZrO3. J. Mater. Res., 1994, 9, P. 2277–2284.

29. Kov´acs T.N., Hunyadi D., de Lucena A.L.A., Szil´agyi I.M. Thermal decomposition of ammonium molybdates. J. Therm. Anal. Calorim., 2016, 124, P. 1013–1021.

30. Fait M.J.G., Lunk H.-J., Feist M., Schneider M., Dann J.N., Frisk T. Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions: Characterization by thermal analysis, X-ray diffraction and spectroscopic methods. Thermochim. Acta, 2008, 469, P. 12–22.

31. Hunyadi D., Saj´o I., Szil´agyi I.M. Structure and thermal decomposition of ammonium metatungstate. J. Therm. Anal. Calorim., 2014, 116, P. 329– 337.

32. Marafi M., Stanislaus A. Influence of catalyst acidity and feedstock quality on hydrotreating catalyst deactivation by coke deposition. Pet. Sci. Technol., 2001, 19, P. 697–710.

33. Dychalska A., Popielarski P., Frank´ow W., Fabisiak K., Paprocki K., Szybowicz M. Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Mater. Sci., 2015, 33.

34. Guichard B., Roy-Auberger M., Devers E., Rebours B., Quoineaud A.A., Digne M. Characterization of aged hydrotreating catalysts. Part I: Coke depositions, study on the chemical nature and environment. Appl. Catal. A Gen., 2009, 367, P. 1–8.

35. Gonz´alez-Cort´es S.L., Qian Y., Almegren H.A., Xiao T., Kuznetsov V.L., Edwards P.P. Citric acid-assisted synthesis of γ-alumina-supported high loading CoMo sulfide catalysts for the hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) reactions. Appl. Petrochemical Res., 2015, 5, P. 181–197.

36. Tian H., Roberts C.A., Wachs I.E. Molecular Structural Determination of Molybdena in Different Environments: Aqueous Solutions, Bulk Mixed Oxides, and Supported MoO3 Catalysts. J. Phys. Chem. C, 2010, 114, P. 14110–14120.

37. Goetze J., Meirer F., Yarulina I., Gascon J., Kapteijn F., Ruiz-Mart´ınez J., Weckhuysen B.M. Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV-vis Spectroscopy. ACS Catal., 2017, 7, P. 4033– 4046.

38. Ross-Medgaarden E.I., Wachs I.E. Structural Determination of Bulk and Surface Tungsten Oxides with UV-vis Diffuse Reflectance Spectroscopy and Raman Spectroscopy. J. Phys. Chem. C, 2007, 111, P. 15089–15099.

39. Garbarino G., Riani P., Infantes-Molina A., Rodr´ıguez-Castell´on E., Busca G. On the detectability limits of nickel species on NiO/γ-Al2O3 catalytic materials. Appl. Catal. A Gen., 2016, 525, P. 180–189.

40. Jeziorowski H., Knoezinger H. Raman and ultraviolet spectroscopic characterization of molybdena on alumina catalysts. J. Phys. Chem., 1979, 83, P. 1166–1173.

41. da Silva V.L.S., Frety R., Schmal M. Activation and Regeneration of a NiMo/Al2O3 Hydrotreatment Catalyst. Ind. Eng. Chem. Res., 1994, 33, P. 1692–1699.

42. Romanova T.S., Nadeina K.A., Danilova I.G., Danilevich V.V., Pakharukova V.P., Gabrienko A.A., Glazneva T.S., Gerasimov E.Y., Prosvirin I.P., Vatutina Y.V., Kazakov M.O., Klimov O.V., Noskov A.S. Modification of HDT catalysts of FCC feedstock by adding silica to the kneading paste of alumina support: Advantages and disadvantages. Fuel, 2022, 324, 124555.

43. Mohamed M.M., Ahmed S.A., Khairou K.S. Unprecedented high photocatalytic activity of nanocrystalline WO3/NiWO4 hetero-junction towards dye degradation: Effect of template and synthesis conditions. Appl. Catal. B Environ., 2014, 150–151, P. 63–73.

44. Leonova K.A., Klimov O.V., Kochubey D.I., Chesalov Y.A., Gerasimov E.Y., Prosvirin I.P., Noskov A.S. Optimal pretreatment conditions for Co–Mo hydrotreatment catalysts prepared using ethylenediamine as a chelating agent. Catal. Today, 2014, 220–222, P. 327–336.

45. Bukhtiyarova G.A., Klimov O.V., Kochubey D.I., Noskov A.S., Pashigreva A.V. EXAFS study of oxide precursors of the high active Co–Mo hydrotreating catalysts: Effect of drying conditions. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 2009, 603, P. 119–121.

46. Courty P., Ajot H., Marcilly C., Delmon B. Oxydes mixtes ou en solution solide sous forme tr`es divis´ee obtenus par d´ecomposition thermique de pr´ecurseurs amorphes. Powder Technol., 1973, 7, P. 21–38.

47. Leonova K.A., Klimov O.V., Kochubey D.I., Chesalov Y.A., Gerasimov E.Y., Prosvirin I.P., Noskov A.S. Optimal pretreatment conditions for Co–Mo hydrotreatment catalysts prepared using ethylenediamine as a chelating agent. Catal. Today, 2014, 220–222, P. 327–336.

48. Guzm´an-Castillo M.L., Bokhimi X., Toledo-Antonio A., Salmones-Bl´asquez J., Hern´andez-Beltr´an F. Effect of Boehmite Crystallite Size and Steaming on Alumina Properties. J. Phys. Chem. B, 2001, 105, P. 2099–2106.

49. Boumaza A., Favaro L., L´edion J., Sattonnay G., Brubach J.B., Berthet P., Huntz A.M., Roy P., T´etot R. Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study. J. Solid State Chem., 2009, 182, P. 1171–1176.

50. Liu Q., Wang A., Wang X., Zhang T. Mesoporous γ-alumina synthesized by hydro-carboxylic acid as structure-directing agent. Microporous Mesoporous Mater., 2006, 92, P. 10–21.

51. Tichit D., El Alami D., Figueras F. Influence of the Preparation and of the Activation Treatments on the Catalytic Activity of Mechanical Mixtures of Sulfated Zirconia and Pt/Al2O3. J. Catal.,1996, 163, P. 18–27.

52. Ozkan U., Schrader G.L. NiMoO4 selective oxidation catalysts containing excess MoO3 for the conversion of C4 hydrocarbons to maleic anhydride: I. Preparation and characterization. J. Catal.,1985, 95, P. 120–136.

53. Pampararo G., Garbarino G., Ardoino N., Riani P., Busca G. A study of molybdena catalysts in ethanol oxidation. Part 1. Unsupported and silica-supported MoO3. J. Chem. Technol. Biotechnol., 2021, 96.

54. Horsley J.A., Wachs I.E., Brown J.M., Via G.H., Hardcastle F.D. Structure of surface tungsten oxide species in the tungsten trioxide/alumina supported oxide system from x-ray absorption near-edge spectroscopy and Raman spectroscopy. J. Phys. Chem., 1987, 91, P. 4014–4020.

55. Busca G. Differentiation of mono-oxo and polyoxo and of monomeric and polymeric vanadate, molybdate and tungstate species in metal oxide catalysts by IR and Raman spectroscopy. J. Raman Spectrosc., 2002, 33, P. 348–358.

56. Mukhacheva P.P., Vatutina Y.V., Nadeina K.A., Budukva S.V., Panafidin M.A., Pakharukova V.P., Parfenov M.V., Gerasimov E.Y., Klimov O.V., Noskov A.S. Comparison of the HDS DBT Reaction Using Bulk and Supported Catalysts. Chim. Techno Acta, 2024, 11, 202411206.

57. Saih Y., Segawa K. Catalytic activity of CoMo catalysts supported on boron-modified alumina for the hydrodesulphurization of dibenzothiophene and 4.6-dimethyldibenzothiophene. Appl. Catal. A Gen., 2009, 353, P. 258–265.

58. Okamoto Y., Nakano H., Shimokawa T., Imanaka T., Teranishi S. Stabilization effect of Co for Mo phase in Co-MoAl2O3 hydrodesulfurization catalysts studied with X-Ray photoelectron spectroscopy. J. Catal., 1977, 50, P. 447–454.

59. Ben Tayeb K., Lamonier C., Lancelot C., Fournier M., Payen E., Bonduelle A., Bertoncini F. Study of the active phase of NiW hydrocracking sulfided catalysts obtained from an innovative heteropolyanion based preparation. Catal. Today, 2010, 150, P. 207–212.

60. Orsini G., Tricoli V. Facile nonhydrolytic sol–gel route to mesoporous mixed-conducting tungsten oxide. J. Mater. Chem., 2011, 21, P. 14530– 14542.

61. Lorenz M., Schulze M. XPS analysis of electrochemically oxidized nickel surfaces. J. Anal. Chem., 1999, 365, P. 154–157.

62. Kazakova M.A., Kuznetsov V.L., Bokova-Sirosh S.N., Krasnikov D.V., Golubtsov G.V., Romanenko A.I., Prosvirin I.P., Ishchenko A.V., Orekhov A.S., Chuvilin A.L., Obraztsova E.D. Fe–Mo and Co–Mo Catalysts with Varying Composition for Multi-Walled Carbon Nanotube Growth. Phys. Status Solidi, 2018, 255, 1700260.

63. Klimov O.V., Nadeina K.A., Vatutina Y.V., Stolyarova E.A., Danilova I.G., Gerasimov E.Y., Prosvirin I.P., NoskovA.S. CoMo/Al2O3 hydrotreating catalysts of diesel fuel with improved hydrodenitrogenation activity. Catal. Today, 2018, 307, P. 73–83.

64. Bremmer G.M., van Haandel L., Hensen E.J.M., Frenken J.W.M., Kooyman P.J. The effect of oxidation and resulfidation on (Ni/Co)MoS2 hydrodesulfurisation catalysts. Appl. Catal. B Environ., 2019, 243, P. 145–150.


Supplementary files

1. Supplementary Information
Subject
Type Other
Download (1MB)    
Indexing metadata ▾

Review

For citations:


Nadeina K.A., Vatutina Yu.V., Mukhacheva P.P., Budukva S.V., Danilova I.G., Pakharukova V.P., Gerasimov E.Yu., Panafidin M.A., Klimov O.V. Granular Ni–Mo–W bulk hydrotreating catalyst: the effects from precursor calcination. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):837-854. https://doi.org/10.17586/2220-8054-2024-15-6-837-854

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)