Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Development of spectral methods for the analysis of nanocized ferrogarnets of the Y3−xCexFe5−yGayO12 composition

https://doi.org/10.17586/2220-8054-2024-15-6-855-866

Abstract

The study and development of yttrium-iron garnets are in demand and promising when creating materials for integrated optics and magnetic microelectronics. The authors synthesized nanosized cerium-substituted yttrium-iron-gallium garnet of the composition Y3−xCexFe5−yGayO12 (where x = 0.4 – 0.5, and y = 2.4 – 2.6), which is characterized by improved magnetic and optical properties. However, the efficiency of applying this material directly depends on the chemical purity of the source materials, as well as the elemental composition of the intermediate and final products. In this regard, the development of multi-element, selective and accurate methods of analysis is an urgent task. As a result of the studies, methods for spectral analysis of cerium-substituted yttrium-iron-gallium garnet were developed. The conditions for determining target analytes (Mg, Al, Si, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Se, Y, Cd, Sn, Te, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Pb) in the materials in question were studied and established using X-ray fluorescence spectrometry (XRF), arc atomic emission spectrometry (AAES) and inductively coupled plasma mass spectrometry (ICP-MS). Approaches to reducing and eliminating the main spectral and non-spectral interferences in the methods studied were proposed. A comprehensive complementary approach to the analytical control of garnets of the Y3−xCexFe5−yGayO12 composition was developed, which ensures high accuracy and relia- bility of the results, and allows one to expand the nomenclature of target analytes and the boundaries of the determined contents.

About the Authors

N. A. Korotkova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Natalia A. Korotkova

Leninskii prosp., 31, Moscow, 119991



A. A. Arkhipenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Alexandra A. Arkhipenko

Leninskii prosp., 31, Moscow, 119991



M. N. Smirnova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Maria N. Smirnova

Leninskii prosp., 31, Moscow, 119991



V. B. Baranovskaya
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Vasilisa B. Baranovskaya

Leninskii prosp., 31, Moscow, 119991



M. S. Doronina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Marina S. Doronina

Leninskii prosp., 31, Moscow, 119991



V. A. Ketsko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Valerii A. Ketsko

Leninskii prosp., 31, Moscow, 119991



G. E. Marina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Galina E. Marina

Leninskii prosp., 31, Moscow, 119991



References

1. Dehghani D.O., Shokrollahi H., Yang H. The enhancement of the Ce-solubility limit and saturation magnetization in the Ce0.25BixPryY2.75−x−yFe5O12 garnet synthesized by the conventional ceramic method. Ceramics International, 2020, 46(3), P. 2709–2723.

2. Shen T., Dai H., Song M., Liu H., Wei X. Structure and Magnetic Properties of Ce-Substituted Yttrium Iron Garnet Prepared by Conventional Sintering Techniques. Journal of Superconductivity and Novel Magnetism, 2017, 30, P. 937–941.

3. Jung H.K., Kim C.H., Hong A.-R., Lee S.H., Kim T.C., Jang H.S., Kim D.H. Luminescent and magnetic properties of cerium-doped yttrium aluminum garnet and yttrium iron garnet composites. Ceramics International 2019, 45, P. 9846–9851.

4. Hapishah A.N., Hamidon M.N., Syazwan M.M., Shafiee F.N. Effect of grain size on microstructural and magnetic properties of holmium substituted yttrium iron garnets (Y1.5Ho1.5Fe5O12), Results in Physics, 2019, 14, P. 102391.

5. Gota T., Onbasli M.C., Kim D.H., Singh V., Inoue M., Kimerling L.C., Ross C.A. A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet. Optics Express, 2014, 22, P. 19047–19054.

6. Randoshkin V.V., Chervonenkis A.Ya. Applied magneto-optics, Moscow, Energoatomizdat, 1990, 320 p.

7. Smirnova M.N., Glazkova I.S., Nikiforova G.E., Kop’eva M.A., Eliseev A.A., Gorbachev E.A., Ketsko V.A. Synthesis of Ce:YIG nanopowder by gel combustion. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12(2), P. 210–217.

8. Sharm V., Kuanr B.K. Magnetic and crystallographic properties of rare-earth substituted yttrium-iron garnet. Journal of Alloys and Compounds, 2018, 748, P. 591–600.

9. Bokshyts Y.V., Kichanov S.E., Shevchenko G.P., Tratsiak E.V., Parshikova E.A., Kozlenko D.P. Structure and luminescence properties of (Y1−xLax)3(La1−yGay)O12:Ce+3. Inorganic Materials, 2019, 55(8), P. 820–826.

10. Smirnova M.N., Nikiforova G.E., Goeva L.V. One-stage synthesis of (Y0,5Bi0,5)3(Fe0,5Ga0,5)5O12 garnet using the organometallic gel autocombustion approach. Ceramics international, 2018, 45(4), P. 4509–4513.

11. Smirnova M.N., Nipan G.D., Nikiforova G.E. (Y1−xBix)3(Fe1−yGay)5O12 Solid Solution Region in the Ieneke Diagram, Inorganic materials, 2018, 54(7), P. 683–688.

12. Shen T., Dai H., Song M. Structure and Magnetic Properties of Ce-Substituted Yttrium Iron Garnet Prepared by Conventional Sintering Techniques. Journal of Superconductivity and Novel Magnetism, 2017, 30, P. 937–941.

13. Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. Y3Fe5O12/Na,Bi,Sr-doped PZT particulate magnetoelectric composites. Journal of Magnetism and Magnetic Materials, 2016, 397, P. 86–95.

14. Huang M., Zhang S. Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications Applied Physics A, 2002, 74, P. 177–180.

15. Teterina Yu.A., Smirnova M.N., Maslakov K.I., Teterin A.Yu., Kop’eva M.A., Nikiforova G.E., Ketsko V.A. Ionic and Phase Compositions of Y2.5Ce0.5Fe2.5Ga2.5O12. Ferrogarnet Powder Produced by Gel Combustion. Doklady Physical Chemistry, 2022, 5032, P. 45–49.

16. Yushchuk S.I., Yuryev S.O., Moklyak V.V. Monocrystalline ferrogarnet films with low magnetizations and small magnetic losses. Materials Today: Proceedings, 2022, 62, P. 5771–5774.

17. Khivintsev Y.V., Sakharov V.K., Kozhevnikov A.V., Dudko G.M., Filimonov Y.A., Khitun A. Spin waves in YIG based magnonic networks: Design and technological aspects. Journal of Magnetism and Magnetic Materials, 2022, 545, P. 168754.

18. Jin L., Jia K., He Y., Wang G., Zhong Z., Zhang H. Pulsed laser deposition grown yttrium-iron-garnet thin films: Effect of composition and iron ion valences on microstructure and magnetic properties. Applied Surface Science, 2019, 483, P. 947–952.

19. Rao Y., Zhang D., Zhang H., Jin L., Yang Q., Zhong Z., Li M., Hong C., Ma B.O. Thickness dependence of magnetic properties in submicron yttrium iron garnet films. Journal Physics D: Applied Physics, 2018, 51(43), P. 435001.

20. Arkhipenko A.A., Koshel E.S., Baranovskaya V.B. Analysis of cerium oxide by arc atomic emission spectrometry. Zavodskaya laboratoriya. Diagnostika materialov, 2021, 87(11), P. 19–25.

21. Koshel E.S., Arkhipenko A.A., Baranovskaya V.B.. Lutetium oxide analysis by direct arc atomic emission spectrometry. Analytics and control, 2021, 25(2), P. 70–83.

22. Vasilyeva I.E. Shabanova E.V. Stages of arc atomic emission spectrometry development as applied to the solid geological samples’ analysis. Analytics and Control, 2021, 25(4), P. 280–295.

23. Schramm R. Use of X-ray Fluorescence Analysis for the Determination of Rare Earth Elements. Physical Sciences Reviews, 2016, 1(1), P. 20160061.

24. Sitko R., Zawisza B., Czaja M. Fundamental parameters method for determination of rare earth elements in apatites by wavelength-dispersive X-ray fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2005, 20, P. 741–745.

25. Bondarenko A.V., Belonovsky A.V., Katsman Ya.M. Application of the method of fundamental parameters in X-ray fluorescence analysis of pulp products of ore enrichment. Mining Industry, 2021, 5-2, P. 84–88

26. Beckhoff B., Kanngießer B., Langhoff N., Wedell R., Wolff H. Handbook of Practical X-ray Fluorescence Analysis; Part 5 Quantitative Analysis, Berlin/Heidelberg, Springer, 2006, 863 p.

27. Karandashev V.K., Orlova T.V., Zybinsky A.M., Kordyukov S.V., Simakov V.A., Kolotov V.P. Analysis of niobium-rare-earth ores by inductively coupled plasma mass spectrometry. Journal of Analytical Chemistry, 2018, 7, P. 364–373.

28. Salem D.B., Barrat J.A. Determination of rare earth elements in gadolinium-based contrast agents by ICP-MS. Talanta, 2021, 221, P. 121589.

29. Korotkova N.A., Baranovskaya V.B., Petrova K.V. Microwave Digestion and ICP-MS Determination of Major and Trace Elements in Waste Sm-Co Magnets. Metals, 2022, 12(8), P. 1308.

30. eiga M., Mattiazzi P., S. de Gois J., Nascimentod P.C., Borgese D.L.G., Bohrer D. Presence of other rare earth metals in gadolinium-based contrast agents. Talanta, 2020, 216, P. 120940.

31. Tanner S.D., Baranov V.I., Bandura D.R. Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochimica Acta Part B, 2002, 57, P. 1361–1452.

32. Balaram V. Strategies to overcome interferences in elemental and isotopic geochemical analysis by quadrupole inductively coupled plasma mass spectrometry: A critical evaluation of the recent developments. Rapid Commun Mass Spectrom, 2021, 35, P. e9065.

33. Agatemor C., Beauchemin D. Matrix effects in inductively coupled plasma mass spectrometry: A review. Analytica Chimica Acta, 2011, 706(1), P. 66–83.

34. Makonnen Y., Beauchemin D. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B, 2015, 103–104, P. 57–62.

35. Korotkova N.A, Petrova K.V., Baranovskaya V.B. Analysis of cerium-substituted yttrium iron garnet by inductively coupled plasma atomic emission spectrometry with preliminary microwave decomposition. Zavodskaya laboratoriya. Diagnostika materialov, 2023, 89(11), P. 24–33.

36. Rusanov A.K. Fundamentals of quantitative spectral analysis of ores and minerals, M., Nedra, 1971, 360 p.

37. Baranovskaya V.B., Koshel E. Arc atomic emission analysis of rare earth metals and their oxides, M., Technosfera, 132 p.


Review

For citations:


Korotkova N.A., Arkhipenko A.A., Smirnova M.N., Baranovskaya V.B., Doronina M.S., Ketsko V.A., Marina G.E. Development of spectral methods for the analysis of nanocized ferrogarnets of the Y3−xCexFe5−yGayO12 composition. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):855-866. https://doi.org/10.17586/2220-8054-2024-15-6-855-866

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)